We consider non-autonomous variational problems whose the Lagrangian has non-everywhere superlinear growth, in the sense that it can vanish at some points. We prove some sufficient conditions ensuring the coercivity of the integral functional. As a consequence, when the lagrangian is convex with respect to the last variable, the existence of the minimum can be immediately derived.

Coercivity of integral functionals with non-everywhere superlinear lagrangians / Marcelli, Cristina. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - STAMPA. - 12:4(2019), pp. 447-458. [10.1515/acv-2017-0014]

Coercivity of integral functionals with non-everywhere superlinear lagrangians

MARCELLI, Cristina
2019-01-01

Abstract

We consider non-autonomous variational problems whose the Lagrangian has non-everywhere superlinear growth, in the sense that it can vanish at some points. We prove some sufficient conditions ensuring the coercivity of the integral functional. As a consequence, when the lagrangian is convex with respect to the last variable, the existence of the minimum can be immediately derived.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/251788
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact