The primary cause of injury-related death for the elders is represented by falls. The scientific community devoted them particular attention, since injuries can be limited by an early detection of the event. The solution proposed in this paper is based on a combined One-Class SVM (OCSVM) and template-matching classifier that discriminate human falls from nonfalls in a semisupervised framework. Acoustic signals are captured by means of a Floor Acoustic Sensor; then Mel-Frequency Cepstral Coefficients and Gaussian Mean Supervectors (GMSs) are extracted for the fall/nonfall discrimination. Here we propose a single-sensor two-stage user-aided approach: in the first stage, the OCSVM detects abnormal acoustic events. In the second, the template-matching classifier produces the final decision exploiting a set of template GMSs related to the events marked as false positives by the user. The performance of the algorithm has been evaluated on a corpus containing human falls and nonfall sounds. Compared to the OCSVM only approach, the proposed algorithm improves the performance by 10.14% in clean conditions and 4.84% in noisy conditions. Compared to Popescu and Mahnot (2009) the performance improvement is 19.96% in clean conditions and 8.08% in noisy conditions.

A Combined One-Class SVM and Template-Matching Approach for User-Aided Human Fall Detection by Means of Floor Acoustic Features / Droghini, Diego; Ferretti, Daniele; Principi, Emanuele; Squartini, Stefano; Piazza, Francesco. - In: COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE. - ISSN 1687-5265. - ELETTRONICO. - 2017:(2017). [doi:10.1155/2017/1512670]

A Combined One-Class SVM and Template-Matching Approach for User-Aided Human Fall Detection by Means of Floor Acoustic Features

DROGHINI, DIEGO;FERRETTI, DANIELE;PRINCIPI, EMANUELE
;
SQUARTINI, STEFANO;PIAZZA, Francesco
2017-01-01

Abstract

The primary cause of injury-related death for the elders is represented by falls. The scientific community devoted them particular attention, since injuries can be limited by an early detection of the event. The solution proposed in this paper is based on a combined One-Class SVM (OCSVM) and template-matching classifier that discriminate human falls from nonfalls in a semisupervised framework. Acoustic signals are captured by means of a Floor Acoustic Sensor; then Mel-Frequency Cepstral Coefficients and Gaussian Mean Supervectors (GMSs) are extracted for the fall/nonfall discrimination. Here we propose a single-sensor two-stage user-aided approach: in the first stage, the OCSVM detects abnormal acoustic events. In the second, the template-matching classifier produces the final decision exploiting a set of template GMSs related to the events marked as false positives by the user. The performance of the algorithm has been evaluated on a corpus containing human falls and nonfall sounds. Compared to the OCSVM only approach, the proposed algorithm improves the performance by 10.14% in clean conditions and 4.84% in noisy conditions. Compared to Popescu and Mahnot (2009) the performance improvement is 19.96% in clean conditions and 8.08% in noisy conditions.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/249952
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 23
social impact