We consider a nonlinear parametric Neumann problem driven by a nonhomogeneous differential operator and a strictly $(p-1)-$sublinear reaction term. We prove a bifurcation -type result establishing the existence of a critical parameter value $lambda_*>0$ such that for all $lambda>lambda_*$ the problem has at least two positive solutions, for $lambda=lambda_*$ it has at least one positive solution and for $lambda in (0,lambda_*)$ there are no positive solutions. Also, for $lambda ge lambda_*$ we show that the problem has a smallest positive solution $ar u_{lambda}$ and we investigate the continuity and monotonicity properties of the map $lambda o ar u_{lambda}$.

Existence, nonexistence and multiplicity of positive solutions for nonlinear, nonhomogeneous Neumann problems / Papageorgiou, N. S.; Papalini, Francesca. - In: MANUSCRIPTA MATHEMATICA. - ISSN 0025-2611. - STAMPA. - 154:1-2(2017), pp. 257-274. [10.1007/s00229-017-0919-6]

Existence, nonexistence and multiplicity of positive solutions for nonlinear, nonhomogeneous Neumann problems

PAPALINI, Francesca
2017-01-01

Abstract

We consider a nonlinear parametric Neumann problem driven by a nonhomogeneous differential operator and a strictly $(p-1)-$sublinear reaction term. We prove a bifurcation -type result establishing the existence of a critical parameter value $lambda_*>0$ such that for all $lambda>lambda_*$ the problem has at least two positive solutions, for $lambda=lambda_*$ it has at least one positive solution and for $lambda in (0,lambda_*)$ there are no positive solutions. Also, for $lambda ge lambda_*$ we show that the problem has a smallest positive solution $ar u_{lambda}$ and we investigate the continuity and monotonicity properties of the map $lambda o ar u_{lambda}$.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/245866
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact