We discuss the structure of radial solutions of some superlinear elliptic equations which model diffusion phenomena when both absorption and production are present. We focus our attention on solutions defined in $\RR$ (regular) or in $\RR\setminus\{0\}$ (singular) which are infinitesimal at infinity, discussing also their asymptotic behavior. The phenomena we find are present only if absorption and production coexist, i.e., if the reaction term changes sign. Our results are then generalized to include the case where Hardy potentials are considered.

On a diffusion model with absorption and production

FRANCA, Matteo;SFECCI, Andrea
2017

Abstract

We discuss the structure of radial solutions of some superlinear elliptic equations which model diffusion phenomena when both absorption and production are present. We focus our attention on solutions defined in $\RR$ (regular) or in $\RR\setminus\{0\}$ (singular) which are infinitesimal at infinity, discussing also their asymptotic behavior. The phenomena we find are present only if absorption and production coexist, i.e., if the reaction term changes sign. Our results are then generalized to include the case where Hardy potentials are considered.
File in questo prodotto:
File Dimensione Formato  
MFASreviewed.pdf

accesso aperto

Descrizione: articolo in preprint
Tipologia: Documento in Pre-print
Licenza: Non definita
Dimensione 749.96 kB
Formato Adobe PDF
749.96 kB Adobe PDF Visualizza/Apri
kelvin1finale.pdf

solo utenti autorizzati

Descrizione: articolo in postprint
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO-Accesso privato/ristretto
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
FrancaSfecciNA17.pdf

accesso aperto

Descrizione: prima pagina
Tipologia: Altro materiale allegato
Licenza: Dominio pubblico
Dimensione 738.95 kB
Formato Adobe PDF
738.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11566/244872
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact