The mechanical characterization of materials exploited in the production of loudspeakers requires the development of investigative techniques that adapt to the specificities of each type of test material. The proposed approaches were diversified depending on the concerned material and the nature of the characterization, i.e. static or transient versus dynamic. A new hybrid dynamic characterization of paper was presented. Thanks to the combined employment of a Finite Element Method together with the Experimental Modal Analysis, the dynamic mechanical properties of the material, i.e. the storage and the loss moduli, can be evaluated in a wide range of frequency. A linear relationship between mechanical properties of paper and frequency was found within the acoustic range. The proposed experimental setup for the transient test on rubbery materials aimed to the investigation of the three-dimensional strain state of the sample subjected to uniaxial load. The viscoelastic behavior of the material was then described through the constitutive laws provided by the generalized Maxwell model and the generalized Kelvin-Voigt model. The three-dimensional strain measurement allowed the identification of the limits in terms of applied strain within which the hypothesis of isotropic and incompressible material is verified. The dynamical characterization was performed by means of a new approach for the construction of the mastercurves of both storage and loss modulus starting from Dynamic Mechanical Thermal Analysis data. The experimental results were described by the Havriliak-Negami model, which represents a powerful tool for determining the shift factors needed to achieved a reliable mastercurve within a wide range of frequency. The developed methodologies allowed to describe the mechanical properties of the investigated materials by means of parametric models. The complete set of identified parameters are readily employable for the purpose of numerical simulation of the loudspeaker.
La caratterizzazione di materiali utilizzati nella produzione di altoparlanti necessita dello sviluppo di tecniche investigative che si adattano alle specificità di ciascuna tipologia di materiale in esame. In questa tesi vengono quindi proposti approcci diversi in base al materiale e al tipo di caratterizzazione impiegata, ovvero statica/transitoria e dinamica. Viene presentata una nuova caratterizzazione dinamica della carta basata su un metodo ibrido. Infatti, grazie all’utilizzo combinato del metodo agli elementi finiti e dell’analisi modale sperimentale, è stato possibile valutare le proprietà dinamiche meccaniche del materiale in termini di modulo conservativo e dissipativo all’interno di un ampio range di frequenze, In particolare, nel range di frequenze acustiche è stata individuata una relazione lineari tra le caratteristiche meccaniche della carta e la frequenza d’eccitazione. Per quanto riguarda la gomma, è stato possibile analizzare la deformazione tridimensionale dei campioni sottoposti a carico uniassiale tramite lo sviluppo di un opportuno setup sperimentale. Ciò ha permesso di descrivere il comportamento viscoelastico del materiale medianti le leggi costitutive dei modelli generalizzati di Maxwell e di Kelvin-Voigt. Inoltre, la misura della deformazione tridimensionale ha permesso di identificare i limiti in termini di deformazione entro i quali le ipotesi di incomprimibilità e isotropia del materiale sono verificate. La caratterizzazione dinamica ha sfruttato i dati ottenuti mediante prove di analisi dinamica termica al fine di sviluppare un nuovo approccio per la costruzione delle mastercurve del modulo conservativo e di quello dissipativo. I risultati sperimentali sono stati descritti mediante il modello di Havriliak-Negami, il quale è risultato essere un potente strumento per la determinazione dei fattori di shift necessari all’ottenimento della mastercurve in un ampio range di frequenze. Le varie metodologie sviluppate hanno permesso di descrivere le proprietà meccaniche dei materiali in esame tramite modelli parametrici. I parametri così individuati possono essere facilmente impiegabili nelle simulazioni numeriche degli altoparlanti.
Development and application of experimental methodologies for the mechanical characterization of non-linear materials exploited in the production of loudspeakers / Lonzi, Barbara. - (2015 Mar 04).
Development and application of experimental methodologies for the mechanical characterization of non-linear materials exploited in the production of loudspeakers
Lonzi, Barbara
2015-03-04
Abstract
The mechanical characterization of materials exploited in the production of loudspeakers requires the development of investigative techniques that adapt to the specificities of each type of test material. The proposed approaches were diversified depending on the concerned material and the nature of the characterization, i.e. static or transient versus dynamic. A new hybrid dynamic characterization of paper was presented. Thanks to the combined employment of a Finite Element Method together with the Experimental Modal Analysis, the dynamic mechanical properties of the material, i.e. the storage and the loss moduli, can be evaluated in a wide range of frequency. A linear relationship between mechanical properties of paper and frequency was found within the acoustic range. The proposed experimental setup for the transient test on rubbery materials aimed to the investigation of the three-dimensional strain state of the sample subjected to uniaxial load. The viscoelastic behavior of the material was then described through the constitutive laws provided by the generalized Maxwell model and the generalized Kelvin-Voigt model. The three-dimensional strain measurement allowed the identification of the limits in terms of applied strain within which the hypothesis of isotropic and incompressible material is verified. The dynamical characterization was performed by means of a new approach for the construction of the mastercurves of both storage and loss modulus starting from Dynamic Mechanical Thermal Analysis data. The experimental results were described by the Havriliak-Negami model, which represents a powerful tool for determining the shift factors needed to achieved a reliable mastercurve within a wide range of frequency. The developed methodologies allowed to describe the mechanical properties of the investigated materials by means of parametric models. The complete set of identified parameters are readily employable for the purpose of numerical simulation of the loudspeaker.File | Dimensione | Formato | |
---|---|---|---|
tesi_Lonzi.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
6.16 MB
Formato
Adobe PDF
|
6.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.