Soil management can contribute significantly to increasing agricultural soil quality. Practices such as reduced tillage, organic amendments application and cover cropping are all recognized as valuable ways to restore the depleted SOM pools and sequester CO2 from the atmosphere, hence reducing the environmental impact of farming. The amount of organic carbon (OC) in the soil is controlled by the amount of OC returning to the soil during cultivation, and the decomposition rate, i.e. stability, of the organic input. Therefore, it is of key importance to understand the mechanisms that allow SOM to stabilize within the soil matrix. Soil organic matter (SOM) resistance to degradation depends on its chemical properties and, more importantly, on the interactions between organic molecules and the soil matrix i.e. occlusion within soil aggregates and interaction with mineral particles surfaces. Cultivation has a profound effect on of these mechanisms, as it determines the amount and chemical composition of the organic inputs that reach the soil, and includes tillage practices that disrupt soil aggregates, decreasing SOM stability. The aim of this research was to provide a scientific contribution to the understanding of how crop rotations affect the processes that underlie SOM accumulation within cropland soils. The study examined the effects of two long term (13 y) crop rotations, one characterized by low tillage intensity and N rich crop residues (ALF) and the other by higher tillage intensity and lower N input from plant residues (CON), on SOM stabilization. The effects of the introduction of a cereal-legume cropping sequence in the two fields were also observed on SOM amount and chemical composition. This experimental design allowed gaining an insight on both the long term and the short term consequences of cultivation on soil organic matter stabilization dynamics. In a first experiment, a sequential chemical fractionation was conducted on soil samples from ALF and CON in order to isolate: light fraction (LF), water soluble organic carbon (WSOC), fulvic acids (FAs) and humic acids (HAs). In a second experiment the same soil samples were subjected to a combined aggregate size and density fractionation, in order to isolate fPOM, oPOM from macro and micro-aggregates, and mineral associated organic matter in macro-aggregates, micro-aggregates and in silt and clay size particles. Our results showed that cultivation intensity and plant residues chemical composition both affected the extent to which SOM stabilizes within the soil profile, mostly via occlusion within soil aggregates and association with mineral particles. Tillage exerted a disrupting action against soil aggregates, which allowed more coarse aggregates to form in ALF, as compared to CON. Nevertheless, tillage operations conducted during the cultivation of winter wheat and chickpea, despite affecting negatively the amount of macro-aggregates in ALF, did not determine the mineralization of occluded POM, due to high level of inorganic C which acted as a cementing agent for soil aggregates. The continuous input of organic material which occurred in ALF during the 13 years before the beginning of the experiment, determined high levels of microbial activity, which determined in turn a high capacity to mineralize fPOM once the continuity of the organic input was interrupted. SOM chemical composition changed significantly in the two soils following the cultivation of winter wheat and chickpea, as it emerged from both the chemical fractionation experiment and the combined aggregate size and density fractionation experiment. In the former, we observed a consistent increase of HAs and FAs content in both the soils at 0-10 following the cultivation of chickpea. In the latter this corresponded to a complex pattern of changes occurring in the two soils across different aggregate and density fractions. In ALF, the conversion to the more intensive cropping system caused coarse fPOM to mix with finer and more degraded fPOM, as a consequence of the interruption of the continuous OC inputs. SOC content decreased in the macro-aggregates and relocated towards the silt and clay size particles, as an effect of the total macro-aggregates mass lost. The cultivation of winter wheat and chickpea in CON determined the introduction of fresh N rich plant residues. This in turn allowed for OC and N to accumulate in close association with silt and clay size particles. In addition, the cereal-legume cropping sequence caused new SOM to accumulate within soil aggregates, possibly as an effect of microbial mediated reactions. Our study showed that the effect of crop rotations on SOM accumulation and stability is not determined only by tillage disrupting action towards soil aggregates, as organic inputs quality and microbial mediated processes affect the mechanisms that allow for SOM protection via spatial inaccessibility and interaction with mineral surfaces.
La gestione del suolo in agricoltura puo’ contribuire significativamente ad accrescere la qualita’ dei suoli. Pratiche quali le lavorazioni minime, l’applicazione di ammendanti organici e la coltivazione di colture di copertura costituiscono delle valide strategie per accrescere il contenuto di sostanza organica nei suoli agricoli e squestrare CO2 dall’atmosfera, riducendo l’impatto ambientale dell’attivita’ agricola. Il contenuto di carbonio organico (OC) nel suolo e’ controllato dall’entita’ degli input di materiale organico che giungono al suolo in seguito alla coltivazione, e dalla resistenza offerta dalla sostanza organica alla degradazione microbica. Lo studio dei meccanismi che presiedono la stabilizzazione della sostanza organica del suolo (SOM) e’ quindi di primaria importanza. La resistenza offerta dalla SOM alla degradazione microbica dipende dalle sue proprieta’ chimiche e, in maggior misura, dalle interazioni che si stabiliscono fra le molecole organiche e la matrice del suolo. Rivestono particolare importanza l’occlusione dei residui organici grossolani all’interno degli aggregati e le interazioni che si stabiliscono fra molecole organiche e superfici delle particelle minerali. La coltivazione influenza in maniera profonda questi meccanismi, determinando la quantita’ di input organici che giungono al suolo ad ogni ciclo colturale e disturbando la formazione degli aggregati tramite le lavorazioni. Lo scopo di questa ricerca e’ stato quello di analizzare come le rotazioni colturali influenzano i processi che si trovano alla base della stabilizzazione della SOM nei suoli agricoli. Lo studio ha preso in esame due rotazioni colturali svolte in un arco temporale di 13 anni. Una delle due rotazioni e’ stata caratterizzata da lavorazioni del suolo poco frequenti e dalla presenza di residui colturali ricchi in N (ALF), mentre l’altra rispondeva alle esigenze di un’agricoltura piu’ intensiva, con lavorazioni frequenti e prevalenza di colture sfruttanti (CON). I due campi sperimentali sono stati coltivati con grano duro e cece in due successive stagioni colturali e gli effetti delle rotazioni colturali effettuate nei 13 anni precedenti l’inizio dell’esperimento, cosi’ come quelli relativi alla coltivazione di grano e cece nei due campi, sono stati analizzati approfonditamente. Il primo esperimento ha preso in considerazione gli effetti delle pratiche sopra citate sulla composizione chimica della sostanza organica. Un frazionamento chimico sequenziale e’ stato applicato ai campioni di suolo, in modo da ottenere un pool di SOM labile, composto dalla frazione leggera (LF) e dal carbonio organico solubile (WSOC), e un pool recalcitrante costituito dalla frazione umica, ulteriormente divisa in acidi umici (HAs) e acidi fulvici (FAs). Il secondo esperimento ha avuto come oggetto l’analisi degli effetti delle stesse pratiche colturali sull’occlusione della sostanza organica negli aggregati e sulla formazione di complessi organo-minerali. Durante il secondo esperimento sono state isolate, mediante frazionamento per classi di aggregati e per densita’il contenuto e la composizione chimica delle particelle organiche grossolane libere (fPOM) e di quelle occluse in aggregati di diverse dimensioni, cosi’ come della frazione organica intimamente legata alle superfici dei minerali. I risultati ottenuti hanno evidenziato che la stabilizzazione della SOM e’ influenzata sia dalla intensita’ delle lavorazioni, sia dalla composizione chimica dei residui colturali, principalmente attraverso l’influenza che questi due fattori esercitano sulla formazione degli aggregati e sull’interazione fra molecole organiche e superfici dei minerali. Le lavorazioni hanno esercitato un’azione dirompente sugli aggregati, particolarmente evidente nella classe dei macro-aggregati (>200 μm). Di conseguenza, la quantita’ di macro aggregati in ALF era significativamente maggiore che in CON all’inizio dell’esperimento. Le lavorazioni svolte durante la coltivazione del grano e del cece, sebbene abbiano causato una diminuzione del contenuto di macro-aggregati in ALF, non hanno determinato una riduzione del contenuto di sostanza organica occlusa all’interno degli aggregati, probabilmente a causa della forte azione cementante svolta dal carbonato di calcio (CaCO3) sugli aggregati. I continui input di materiale organico avvenuti in ALF durante i 13 anni precedenti l’inizio dell’esperimento, hanno favorito le attivita’ della comunita’ microbica, che a sua volta ha determinato un’alta capacita’ di mineralizzare la fPOM. La composizione chimica della sostanza organica e’ cambiata significativamente nei due suoli in seguito alla coltivazione di grano e cece, come si evince dai risultati emersi in entrambi gli esperimenti. Il frazionamento chimico sequenziale ha messo in luce un aumento del contenuto di acidi umici e fulvici in entrambi i suoli in seguito alla coltivazione del cece. Il frazionamento dei suoli per classi di aggregati e per densita’ ha meso in luce un pattern piu’ complesso. In ALF l’aumento dell’intensita’ delle pratiche agricole ha determinato il rimescolamento della fPOM grossolana con parte della fPOM piu’ fine e degradata, probabilmente a causa dell’interruzione della continuita’ degli input di residui organici. Il contenuto di OC nei macro aggregati e’ diminuito, mentre e’ aumentato il ternore di OC nelle particelle non aggreagate piu’ fini. In CON la coltivazione di grano, e soprattutto del cece, ha determinato l’arrivo al suolo di residui ricchi in N. Questo ha fatto si’ che il conteuto di OC e N aumentasse nelle particelle minerali piu’ fini. L’accresciuta attivita’ microbica avvenuta in CON durante la prova di campo, e’ probabilmente alla base dell’accumulo di materiale organico relativamente “fresco” avvenuto all’interno degli aggregati. Questa ricerca ha mostrato come gli effetti delle rotazioni colturali non dipendono solamente dall’azione di disturbo alla formazione degli aggregati esercitata dalle lavorazioni del suolo, ma anche dalla qualita’ degli input organici e da processi mediati dalla comunita’ microbica, i quali influenzano l’occlusione della SOM negli aggregati e l’interazione della sostanza organica con le particell minerali.
Long term and short term effects of crop rotations in organic farming on soil organic matter content and stabilization dynamics / Angeletti, Carlo. - (2016 Feb 26).
Long term and short term effects of crop rotations in organic farming on soil organic matter content and stabilization dynamics
Angeletti, Carlo
2016-02-26
Abstract
Soil management can contribute significantly to increasing agricultural soil quality. Practices such as reduced tillage, organic amendments application and cover cropping are all recognized as valuable ways to restore the depleted SOM pools and sequester CO2 from the atmosphere, hence reducing the environmental impact of farming. The amount of organic carbon (OC) in the soil is controlled by the amount of OC returning to the soil during cultivation, and the decomposition rate, i.e. stability, of the organic input. Therefore, it is of key importance to understand the mechanisms that allow SOM to stabilize within the soil matrix. Soil organic matter (SOM) resistance to degradation depends on its chemical properties and, more importantly, on the interactions between organic molecules and the soil matrix i.e. occlusion within soil aggregates and interaction with mineral particles surfaces. Cultivation has a profound effect on of these mechanisms, as it determines the amount and chemical composition of the organic inputs that reach the soil, and includes tillage practices that disrupt soil aggregates, decreasing SOM stability. The aim of this research was to provide a scientific contribution to the understanding of how crop rotations affect the processes that underlie SOM accumulation within cropland soils. The study examined the effects of two long term (13 y) crop rotations, one characterized by low tillage intensity and N rich crop residues (ALF) and the other by higher tillage intensity and lower N input from plant residues (CON), on SOM stabilization. The effects of the introduction of a cereal-legume cropping sequence in the two fields were also observed on SOM amount and chemical composition. This experimental design allowed gaining an insight on both the long term and the short term consequences of cultivation on soil organic matter stabilization dynamics. In a first experiment, a sequential chemical fractionation was conducted on soil samples from ALF and CON in order to isolate: light fraction (LF), water soluble organic carbon (WSOC), fulvic acids (FAs) and humic acids (HAs). In a second experiment the same soil samples were subjected to a combined aggregate size and density fractionation, in order to isolate fPOM, oPOM from macro and micro-aggregates, and mineral associated organic matter in macro-aggregates, micro-aggregates and in silt and clay size particles. Our results showed that cultivation intensity and plant residues chemical composition both affected the extent to which SOM stabilizes within the soil profile, mostly via occlusion within soil aggregates and association with mineral particles. Tillage exerted a disrupting action against soil aggregates, which allowed more coarse aggregates to form in ALF, as compared to CON. Nevertheless, tillage operations conducted during the cultivation of winter wheat and chickpea, despite affecting negatively the amount of macro-aggregates in ALF, did not determine the mineralization of occluded POM, due to high level of inorganic C which acted as a cementing agent for soil aggregates. The continuous input of organic material which occurred in ALF during the 13 years before the beginning of the experiment, determined high levels of microbial activity, which determined in turn a high capacity to mineralize fPOM once the continuity of the organic input was interrupted. SOM chemical composition changed significantly in the two soils following the cultivation of winter wheat and chickpea, as it emerged from both the chemical fractionation experiment and the combined aggregate size and density fractionation experiment. In the former, we observed a consistent increase of HAs and FAs content in both the soils at 0-10 following the cultivation of chickpea. In the latter this corresponded to a complex pattern of changes occurring in the two soils across different aggregate and density fractions. In ALF, the conversion to the more intensive cropping system caused coarse fPOM to mix with finer and more degraded fPOM, as a consequence of the interruption of the continuous OC inputs. SOC content decreased in the macro-aggregates and relocated towards the silt and clay size particles, as an effect of the total macro-aggregates mass lost. The cultivation of winter wheat and chickpea in CON determined the introduction of fresh N rich plant residues. This in turn allowed for OC and N to accumulate in close association with silt and clay size particles. In addition, the cereal-legume cropping sequence caused new SOM to accumulate within soil aggregates, possibly as an effect of microbial mediated reactions. Our study showed that the effect of crop rotations on SOM accumulation and stability is not determined only by tillage disrupting action towards soil aggregates, as organic inputs quality and microbial mediated processes affect the mechanisms that allow for SOM protection via spatial inaccessibility and interaction with mineral surfaces.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Angeletti.pdf
embargo fino al 31/12/2030
Descrizione: Tesi_Angeletti.pdf
Tipologia:
Tesi di dottorato
Licenza d'uso:
Creative commons
Dimensione
1.97 MB
Formato
Adobe PDF
|
1.97 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.