At present, the mean oceanic SO4 2- concentration is 28-30 mmol L-1. This nutrient underwent large variations during Earth history and may have influenced phytoplankton radiation by facilitating the expansion of algae of the red lineage (chl a+c algae like diatoms, dinoflagellates and coccolithophorids) at the expense of algae of the green algae (chl a+b algae) and cyanobacteria. Whether the enzymes that control SO4 2- assimilation in photosynthetic organisms have played a role in controlling algal adaptation to changes in SO4 2- concentration is however unclear. In agreement with previous studies, my thesis reveals that different algal species can modify their physiology to acclimate/adapt to different SO4 2- concentrations. Although SO4 2- availability did not elicit dramatic changes of cell internal composition, the activity of the enzymes involved in the reductive SO4 2- assimilation were appreciably modified, especially ATP sulfurylase (ATPS), suggesting that SO4 2- availability is an important factor in controlling short-term intracellular responses mediated by induction/inhibition of S-related enzymes. The study of ATPS sequences revealed that contrary to other organisms, algal ATPS has a high number of cysteine residues (cys). The position of some of these is conserved, but a notable difference exists between eukaryotic algae and α-cyanobacteria, and β-cyanobacteria. To test if ATPS may be redox regulated in different way in these groups, ATPS activity from seven species was tested after treatment with reducing (dithiothreitol) or oxidizing (trans-4,5-dihydroxy-1,2- dithiane) agents reacting with cys thiol groups. The cys of the partially purified ATPS from Synechocystis sp. (β-cyanobacteria) and T. pseudonana (eukaryotic/α-cyanobacteria) were then identified by mass spectrometry after sulfhydryl alkylation with 2-iodoacetamide. The results show that the number and position of cys in algal ATPS are important factors for the regulation of its activity.

La concentrazione media di SO4 2- in oceano è 28-30 mmol L-1. Essa ha subito notevoli variazioni nel corso della storia della Terra e potrebbe aver facilitato la radiazione delle alghe della linea rossa (alghe con chl a+c quali diatomee, dinoflagellate e coccolitoforidi) a discapito di quelle della linea verde (alghe con chl a+b) e dei cianobatteri. È ancora da chiarire se gli enzimi responsabili dell’assimilazione del SO4 2- negli organismi fotosintetici abbiano svolto un ruolo nel controllare l’adattamento delle alghe alle variazioni di concentrazione del SO4 2-. In accordo con studi precedenti, la mia tesi dimostra che diverse specie algali possono acclimatarsi/adattarsi a diverse concentrazioni di SO4 2-. Anche se la disponibilità di SO4 2- non ha provocato cambiamenti drastici nella composizione cellulare, l’attività degli enzimi coinvolti nell’assimilazione riduttiva del SO4 2- è stata sensibilmente modificata, soprattutto quella dell’ATP solforilasi (ATPS), suggerendo che la disponibilità di SO4 2- sia un fattore importante nel controllo delle risposte intracellulari a breve termine mediate da induzione/inibizione delle attività enzimatiche. Lo studio delle sequenze di ATPS ha rivelato che contrariamente ad altri organismi, quelle algali hanno molti residui di cisteina. La posizione di alcuni di essi è conservata, sebbene vi sia una notevole differenza tra alghe eucariotiche e α-cianobatteri, e β-cianobatteri. Per verificare se l’ATPS potesse essere redox regolata in modo diverso in questi gruppi, l’attività dell’ATPS di sette specie è stata testata dopo trattamento con agenti riducenti (ditiotreitolo) o ossidanti (trans-4,5- diidrossi-1,2-ditiano) dei gruppi tiolici delle cisteine. Le cisteine dell’ATPS parzialmente purificata da Synechocystis sp. (β-cianobatteri) e T. pseudonana (eucarioti/α-cianobatteri) sono state poi identificate mediante spettrometria di massa dopo alchilazione dei gruppi sulfidrilici con iodoacetamide. I risultati mostrano che il numero e la posizione delle cisteine nelle ATPS algali sono fattori importanti per la regolazione della loro attività.

Sulfur metabolism in microalgae / Prioretti, Laura. - (2015 Mar 17).

Sulfur metabolism in microalgae

Prioretti, Laura
2015-03-17

Abstract

At present, the mean oceanic SO4 2- concentration is 28-30 mmol L-1. This nutrient underwent large variations during Earth history and may have influenced phytoplankton radiation by facilitating the expansion of algae of the red lineage (chl a+c algae like diatoms, dinoflagellates and coccolithophorids) at the expense of algae of the green algae (chl a+b algae) and cyanobacteria. Whether the enzymes that control SO4 2- assimilation in photosynthetic organisms have played a role in controlling algal adaptation to changes in SO4 2- concentration is however unclear. In agreement with previous studies, my thesis reveals that different algal species can modify their physiology to acclimate/adapt to different SO4 2- concentrations. Although SO4 2- availability did not elicit dramatic changes of cell internal composition, the activity of the enzymes involved in the reductive SO4 2- assimilation were appreciably modified, especially ATP sulfurylase (ATPS), suggesting that SO4 2- availability is an important factor in controlling short-term intracellular responses mediated by induction/inhibition of S-related enzymes. The study of ATPS sequences revealed that contrary to other organisms, algal ATPS has a high number of cysteine residues (cys). The position of some of these is conserved, but a notable difference exists between eukaryotic algae and α-cyanobacteria, and β-cyanobacteria. To test if ATPS may be redox regulated in different way in these groups, ATPS activity from seven species was tested after treatment with reducing (dithiothreitol) or oxidizing (trans-4,5-dihydroxy-1,2- dithiane) agents reacting with cys thiol groups. The cys of the partially purified ATPS from Synechocystis sp. (β-cyanobacteria) and T. pseudonana (eukaryotic/α-cyanobacteria) were then identified by mass spectrometry after sulfhydryl alkylation with 2-iodoacetamide. The results show that the number and position of cys in algal ATPS are important factors for the regulation of its activity.
17-mar-2015
La concentrazione media di SO4 2- in oceano è 28-30 mmol L-1. Essa ha subito notevoli variazioni nel corso della storia della Terra e potrebbe aver facilitato la radiazione delle alghe della linea rossa (alghe con chl a+c quali diatomee, dinoflagellate e coccolitoforidi) a discapito di quelle della linea verde (alghe con chl a+b) e dei cianobatteri. È ancora da chiarire se gli enzimi responsabili dell’assimilazione del SO4 2- negli organismi fotosintetici abbiano svolto un ruolo nel controllare l’adattamento delle alghe alle variazioni di concentrazione del SO4 2-. In accordo con studi precedenti, la mia tesi dimostra che diverse specie algali possono acclimatarsi/adattarsi a diverse concentrazioni di SO4 2-. Anche se la disponibilità di SO4 2- non ha provocato cambiamenti drastici nella composizione cellulare, l’attività degli enzimi coinvolti nell’assimilazione riduttiva del SO4 2- è stata sensibilmente modificata, soprattutto quella dell’ATP solforilasi (ATPS), suggerendo che la disponibilità di SO4 2- sia un fattore importante nel controllo delle risposte intracellulari a breve termine mediate da induzione/inibizione delle attività enzimatiche. Lo studio delle sequenze di ATPS ha rivelato che contrariamente ad altri organismi, quelle algali hanno molti residui di cisteina. La posizione di alcuni di essi è conservata, sebbene vi sia una notevole differenza tra alghe eucariotiche e α-cianobatteri, e β-cianobatteri. Per verificare se l’ATPS potesse essere redox regolata in modo diverso in questi gruppi, l’attività dell’ATPS di sette specie è stata testata dopo trattamento con agenti riducenti (ditiotreitolo) o ossidanti (trans-4,5- diidrossi-1,2-ditiano) dei gruppi tiolici delle cisteine. Le cisteine dell’ATPS parzialmente purificata da Synechocystis sp. (β-cianobatteri) e T. pseudonana (eucarioti/α-cianobatteri) sono state poi identificate mediante spettrometria di massa dopo alchilazione dei gruppi sulfidrilici con iodoacetamide. I risultati mostrano che il numero e la posizione delle cisteine nelle ATPS algali sono fattori importanti per la regolazione della loro attività.
sulfur metabolism
algae
cysteine
phytoplankton
redox regulation
algal evolution
ATP sulfurylase
File in questo prodotto:
File Dimensione Formato  
tesi_Prioretti.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato
Licenza d'uso: Non specificato
Dimensione 7.97 MB
Formato Adobe PDF
7.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/243011
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact