Composites materials are continuously evolving and their use for the repair and retrofit of civil structures has become a common practice among the engineering community. Fabric Reinforced Cementitious Matrix (FRCM) system represents a new repair methodology for structural strengthening and is becoming a viable alternative to FRP, whenever the project conditions do not allow the use of organic polymer based composites. FRCM is described by the American Concrete Institute (ACI) committee 549 like a composite material consisting of a sequence of one or more layers of cement-based matrix reinforced with dry fibers in the form of open single or multiple meshes that, when adhered to concrete or masonry structural members, forms a FRCM system. FRCMs are usually constituted by dry fabrics, however, it is proved that the bond at the matrix-fibers interface is not optimal, since only the external filaments are in contact with the matrix and able to transfer the load, while the inner filaments slip due to the low friction between the fibers. This work aims to advance the FRCM state of the art in several directions and is divided in four studies. In particular, the study is devoted to characterize several FRCM systems, to clarify the differences in performance and behavior of dry and coated fabrics, to analyze the effects of high temperatures on the FRCM mechanical properties, to evaluate the effectiveness and compatibility with masonry substrates of different mortars (cementitious and geopolymeric). The purpose of First Study is to analyze how different types and amounts of organic coatings applied to a carbon bi-directional fabric could affect the bond behavior at the fiber-mortar interface and mechanical properties of the FRCM system. The effectiveness of coating treatments applied on the fabrics surface was studied by means of direct tensile, pull-off and shear-bond double-lap tests. Experimentation was carried out on different combinations of carbon fabrics and mortars, by varying the level of pre-impregnation of the fabric during the manufacturing process. In addition, the use of a quartz sand layer applied to the fabric after impregnation was investigated. Experimental evidence showed a promising enhancement of the bond between fabric and matrix and, therefore, improved performances of the entire FRCM system even with the use of low percentages of resin, depending on the type of mortar used. The purpose of Second Study is to evaluate the FRCM mechanical behavior under high-temperature conditions. Different FRCM systems were evaluated including carbon fabrics with dry or completely impregnated fibers. The experimental campaign comprised of uniaxial tensile and double-shear bond tests performed under temperatures ranging from 20°C to 120°C. Third Study explores the use of a geopolymer mortar coupled with different carbon fabrics for FRCM applications. The study included the mechanical characterization of the mortar, tensile and double-shear bond tests of the FRCM system when applied to masonry substrates. Finally, Fourth Study analyzes the bond at the FRCM to masonry substrate interface, considering the use of different inorganic primers to improve the interface bond.
Il mondo dei materiali compositi è in continua evoluzione ed il loro utilizzo per il rinforzo, l’adeguamento sismico e la messa in sicurezza di strutture civili è diventata una pratica comune tra gli ingegneri ed architetti. Gli FRCM (Fabric Reinforced Cementitious Matrix) rappresentano una nuova metodologia per il rinforzo strutturale e si stanno proponendo come una valida alternativa ai più affermati FRP, ogni volta che le condizioni di progetto non permettano l'uso di compositi a base di polimeri organici. Gli FRCM sono definiti dall’American Concrete Institute (ACI549) come dei sistemi costituiti dall’accoppiamento di uno o più strati di rete di fibra a elevate prestazioni e di una matrice inorganica stabilizzata impiegata con la funzione di adesivo. Gli FRCM sono generalmente costituiti da reti di fibre secche, tuttavia, si è dimostrato che il legame di interfaccia matrice-fibra non è ottimale, in quanto soltanto i filamenti esterni in contatto con la matrice sono in grado di trasferire gli sforzi, mentre i filamenti interni si sfilano a causa al basso attrito tra le fibre. Questo lavoro ha lo scopo di contribuire a migliorare ed approfondire lo stato dell’arte dei sistemi FRCM in diverse direzioni ed è suddiviso in quattro studi. In particolare la ricerca si è dedicata alla caratterizzazione di diversi sistemi FRCM, in modo da chiarire la differenza in termini di comportamento e prestazioni tra reti di fibre secche o apprettate, di analizzare gli effetti delle elevate temperature sulle proprietà meccaniche degli FRCM, di valutare l'efficacia nell’utilizzo di diverse malte (cementizie e geopolimeriche) e la compatibilità di quest’ultime con supporti in muratura. Lo scopo del primo studio è quello di analizzare come l’utilizzo di diversi tipi di coating (pre-impregnazione a base di resine epossidiche) applicati a reti bi-direzionali in fibra di carbonio vada ad influenzare il comportamento di interfaccia fibre-malta e le proprietà meccaniche dei sistemi FRCM. L'efficacia del coating è stato studiato mediante test di trazione diretta, pull-off e di adesione al supporto. La sperimentazione è stata condotta combinando diversi tipi di rete in carbonio e matrici cementizie, variando il livello di pre-impregnazione del tessuto durante la sua fabbricazione (leggera, media e completa impregnazione). Inoltre, è stato sperimentato e studiato l'utilizzo di uno strato di sabbia quarzifera applicato sulle fibre dopo l’impregnazione. Le prove sperimentali hanno dimostrato un notevole miglioramento del legame di interfaccia tra le fibre e la matrice inorganica e, quindi, un generale miglioramento delle prestazioni del sistema FRCM, anche impregnando le fibre parzialmente, a seconda del tipo di malta usata. Lo scopo del secondo studio è quello di valutare il comportamento meccanico dei sistemi FRCM sottoposti ad alte temperature. Diversi sistemi FRCM sono stati valutati, utilizzando reti bidirezionali in fibra di carbonio secche o pre-impregnate. La campagna sperimentale ha riguardato test di trazione monoassiale su provini di FRCM e test di adesione a supporti in muratura con temperature comprese tra 20 °C e 120 °C. Il terzo studio riguarda il possibile utilizzo di malte geopolimeriche come matrici per sistemi FRCM, accoppiate a diverse reti in fibra di carbonio. Lo studio ha incluso la caratterizzazione meccanica della malta, prove di trazione e di adesione a supporti in muratura. Infine il quarto studio analizza il legame di interfaccia FRCM-substrato in muratura, considerando l'utilizzo di diversi primers inorganici per migliorare l’adesione al supporto.
STUDY OF ENHANCED FIBER REINFORCED CEMENTITIOUS MATRIX (FRCM) SYSTEMS FOR STRUCTURAL REHABILITATION / Donnini, Jacopo. - (2016 Mar 04).
STUDY OF ENHANCED FIBER REINFORCED CEMENTITIOUS MATRIX (FRCM) SYSTEMS FOR STRUCTURAL REHABILITATION
Donnini, Jacopo
2016-03-04
Abstract
Composites materials are continuously evolving and their use for the repair and retrofit of civil structures has become a common practice among the engineering community. Fabric Reinforced Cementitious Matrix (FRCM) system represents a new repair methodology for structural strengthening and is becoming a viable alternative to FRP, whenever the project conditions do not allow the use of organic polymer based composites. FRCM is described by the American Concrete Institute (ACI) committee 549 like a composite material consisting of a sequence of one or more layers of cement-based matrix reinforced with dry fibers in the form of open single or multiple meshes that, when adhered to concrete or masonry structural members, forms a FRCM system. FRCMs are usually constituted by dry fabrics, however, it is proved that the bond at the matrix-fibers interface is not optimal, since only the external filaments are in contact with the matrix and able to transfer the load, while the inner filaments slip due to the low friction between the fibers. This work aims to advance the FRCM state of the art in several directions and is divided in four studies. In particular, the study is devoted to characterize several FRCM systems, to clarify the differences in performance and behavior of dry and coated fabrics, to analyze the effects of high temperatures on the FRCM mechanical properties, to evaluate the effectiveness and compatibility with masonry substrates of different mortars (cementitious and geopolymeric). The purpose of First Study is to analyze how different types and amounts of organic coatings applied to a carbon bi-directional fabric could affect the bond behavior at the fiber-mortar interface and mechanical properties of the FRCM system. The effectiveness of coating treatments applied on the fabrics surface was studied by means of direct tensile, pull-off and shear-bond double-lap tests. Experimentation was carried out on different combinations of carbon fabrics and mortars, by varying the level of pre-impregnation of the fabric during the manufacturing process. In addition, the use of a quartz sand layer applied to the fabric after impregnation was investigated. Experimental evidence showed a promising enhancement of the bond between fabric and matrix and, therefore, improved performances of the entire FRCM system even with the use of low percentages of resin, depending on the type of mortar used. The purpose of Second Study is to evaluate the FRCM mechanical behavior under high-temperature conditions. Different FRCM systems were evaluated including carbon fabrics with dry or completely impregnated fibers. The experimental campaign comprised of uniaxial tensile and double-shear bond tests performed under temperatures ranging from 20°C to 120°C. Third Study explores the use of a geopolymer mortar coupled with different carbon fabrics for FRCM applications. The study included the mechanical characterization of the mortar, tensile and double-shear bond tests of the FRCM system when applied to masonry substrates. Finally, Fourth Study analyzes the bond at the FRCM to masonry substrate interface, considering the use of different inorganic primers to improve the interface bond.File | Dimensione | Formato | |
---|---|---|---|
tesi_donnini.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
13.92 MB
Formato
Adobe PDF
|
13.92 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.