Solid oxide fuel cell (SOFC) is a promising electrochemical technology that can produce electrical and thermal power with outstanding efficiencies, however, a more profound understanding of the physicochemical processes occurring within the cell is necessary to overcome most of the degradation issues currently impeding the maturity of the technology. A systematic synergetic approach between experimental measurements, the use of novel analysis tools and techniques – with special attention to the deconvolution of electrochemical impedance spectroscopy (EIS) spectra by means of the distribution of relaxation times (DRT) method – and modelling theory has proved to be instrumental for the estimation of parameters describing the microstructural and electrochemical properties of two types of planar anode-supported SOFCs, one designed to operate at intermediate temperatures (750ºC) and the other at low temperatures (650ºC). A comprehensive macro-scale computational fluid dynamics (CFD) model of the tested samples incorporating the aforementioned parameters has been validated by confronting the simulated polarization curves with the experimental ones. This model has demonstrated to be a compelling tool to optimize the microstructure of the cells whilst establishing the bases to monitor and analyse the effects of potential degradation phenomena in the cell and predict the electrical output of the cell in the long run under pre-determined operating conditions. Additionally, a CFD model of a tubular-type cell comprised in the power module (i.e. SOFC stack) of a characterised 500Wel power generator has enabled to appreciate how a singular element of the stack behaves under nearly realistic operating conditions.
Le celle a combustibile ad ossido solido (Solid Oxide Fuel Cells - SOFCs) sono una tecnologia promettente in grado di produrre potenza elettrica e termica con un’efficienza eccezionale. Tuttavia, è necessaria una comprensione più approfondita dei processi fisico-chimici che si verificano all’interno della cella per risolvere la maggior parte dei problemi di degradazione che attualmente impediscono la maturità della tecnologia. Un approccio sistematico e sinergico tra misure sperimentali, l’uso di strumenti di analisi e techniche innovative – con particolare attenzione alla deconvoluzione degli spettri di impedenza elettrochimica (Electrochemical Impedance Spectroscopy - EIS) mediante il metodo della distribuzione dei tempi di rilassamento (Distributed Relaxation Times - DRT) – e teoria modellistica ha dimostrato di essere importante per la stima dei parametri che descrivono le caratteristiche microstrutturali ed elettrochimiche di due tipi di SOFC planari anodo-supportate, una progettata per funzionare ad una temperatura intermedia (750ºC) e l’altra per farlo a bassa temperatura (650ºC). Un macro-modello CFD (Computational Fluid Dynamics) dei campioni testati, che incorpora i parametri ottenuti dalla procedura menzionata, è stato convalidato confrontando le curve di polarizzazione simulate con quelle sperimentali. Questo modello ha dimostrato di essere un valido strumento per ottimizzare la microstruttura delle celle e per stabilire le basi per analizzare gli effetti di potenziali fenomeni di degrado nella cella e, infine, prevedere la generazione di elettricità a lungo termine in condizioni di funzionamento predeterminate. Inoltre, un modello CFD di una cella di tipo tubolare all’interno di un generatore di potenza (cioè, stack SOFC) di 500 Wel ha permesso di apprezzare come un singolo elemento dello stack si comporta in condizioni operative quasi realistiche.
Computational Simulation of Solid Oxide Fuel Cells – Integrating numerical and experimental approaches(2015 Feb 27).
Computational Simulation of Solid Oxide Fuel Cells – Integrating numerical and experimental approaches
BOIGUES MUNOZ, CARLOS
2015-02-27
Abstract
Solid oxide fuel cell (SOFC) is a promising electrochemical technology that can produce electrical and thermal power with outstanding efficiencies, however, a more profound understanding of the physicochemical processes occurring within the cell is necessary to overcome most of the degradation issues currently impeding the maturity of the technology. A systematic synergetic approach between experimental measurements, the use of novel analysis tools and techniques – with special attention to the deconvolution of electrochemical impedance spectroscopy (EIS) spectra by means of the distribution of relaxation times (DRT) method – and modelling theory has proved to be instrumental for the estimation of parameters describing the microstructural and electrochemical properties of two types of planar anode-supported SOFCs, one designed to operate at intermediate temperatures (750ºC) and the other at low temperatures (650ºC). A comprehensive macro-scale computational fluid dynamics (CFD) model of the tested samples incorporating the aforementioned parameters has been validated by confronting the simulated polarization curves with the experimental ones. This model has demonstrated to be a compelling tool to optimize the microstructure of the cells whilst establishing the bases to monitor and analyse the effects of potential degradation phenomena in the cell and predict the electrical output of the cell in the long run under pre-determined operating conditions. Additionally, a CFD model of a tubular-type cell comprised in the power module (i.e. SOFC stack) of a characterised 500Wel power generator has enabled to appreciate how a singular element of the stack behaves under nearly realistic operating conditions.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Boigues-Mu├▒oz.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
18.53 MB
Formato
Adobe PDF
|
18.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
abs_Boigues-Mu├▒oz_ita.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
109.17 kB
Formato
Adobe PDF
|
109.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
abs_Boigues-Mu├▒oz_eng.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
108.53 kB
Formato
Adobe PDF
|
108.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.