Energy consumption in buildings represents a challenge in the context of the reduction of greenhouse gas emissions and in a more efficient use of energy. An answer to this issue is the use of Demand side Management (DSM) systems which, through an increase in the use of technology, allow for the reduction of energy consumption. DSM systems need to be assessed during the design process by simulation tools. Moreover, they need simulation and predictive models if the control systems involved are advanced controls such as predictive or multilevel controls. With regards to multilevel controls, another important issue is the correct choice of the data model to properly structure the control systems. In this study, a real high-sensored Smart Village located in Rome composed of a smart building and a smart district of 8 buildings is taken into account. A Simulink simulator based on HAMbase is developed in order to model the building and district energy demands. The building simulator is calibrated and validated on real data taking into account the casual gain values as calibration parameters. The data are acquired in a period of 60 days during the winter of 2013. The optimal simulator configuration permits to obtain a MAPE on the daily transferred thermal energy less than 6%. Afterwards, a decision support system based on Pareto front multi-objective optimization combined with the smart building simulator is reported to show the model potential towards the definition of DSM policies. The simulator of the smart district is then derived directly from the building simulator by reprogramming the HAMbase s-function. This allows for multiple model instances in the same Simulink model. The district simulator is used to introduce the concept of data model in the context of smart districts. Finally, the accuracy of the low order grey-box models for short-term thermal behavior prediction is analyzed. An identification procedure is carried out on a real dataset acquired during the year 2015 from the sensors installed in a single building of the smart district. The identification shows that the second order resistance-capacitance (RC) models are the best choice in terms of accuracy and complexity.
Il consumo energetico negli edifici rappresenta una sfida nel contesto della riduzione delle emissioni inquinanti ed in un più efficiente utilizzo dell’energia. Una risposta a questo problema è data dall’utilizzo di sistemi di Demand Side Management (DSM) i quali permettono di ottenere una riduzione dei consumi tramite un utilizzo sempre più spinto della tecnologia. I sistemi DSM necessitano di essere valutati durante la progettazione mediante tool di simulazione. Essi inoltre necessitano di modelli di simulazione e predizione quando i sistemi di controllo interessati sono controlli avanzati come controlli predittivi o controlli multi-livello. Nel caso di controlli multi-livello un’altra importante questione riguarda la corretta determinazione del data model ai fini dell’opportuna strutturazione del controllo. Nel presente lavoro l’oggetto di studio è uno “Smart Village” altamente sensorizzato localizzato a Roma e composto da uno smart building e uno smart district di 8 edifici. Ai fini della modellazione della domanda energetica dell’edificio e del distretto è stato sviluppato un simulatore in Simulink basato su HAMbase. Il simulatore dell’edificio è stato calibrato e validato su dati reali considerando come parametri di calibrazione i valori dei casual gain. I dati acquisiti coprono un periodo di 60 giorni durante l’inverno del 2013. La configurazione ottima del simulatore consente di ottenere un valore di MAPE dell’energia termica trasferita giornaliera minore del 6%. Successivamente viene riportato un sistema di supporto alle decisione basato sull’ottimizzazione multi-obiettivo a fronte di Pareto combinata con il simulatore dell’edificio. Questo sistema permette di dimostrare la potenzialità del modello nella definizione di politiche di DSM. Il simulatore dello smart district è stato poi derivato direttamente dal simulatore dell’edificio tramite riprogrammazione della s-function di HAMbase. Questo consente di avere istanze multiple del modello in uno stesso modello Simulink. Il simulatore del distretto viene utilizzato per introdurre nel contesto degli smart district il concetto di data model. In ultimo è stata analizzata l’accuratezza di modelli grey-box per la predizione a breve orizzonte predittivo del comportamento termico di edifici. Per questa analisi è stato condotto un processo di identificazione su un dataset reale acquisito durante l’anno 2015 e proveniente dai sensori installati su un singolo edificio dello smart district. L’identificazione mostra come i modelli a resistenza-capacità (RC) del secondo ordine costituiscano la migliore scelta in termini di accuratezza e complessità.
Modelling approaches to smart buildings and smart districts for the definition of demand side management strategies and data models. The ENEA "Smart Village" case study / Fonti, Alessandro. - (2016 Mar 04).
Modelling approaches to smart buildings and smart districts for the definition of demand side management strategies and data models. The ENEA "Smart Village" case study.
Fonti, Alessandro
2016-03-04
Abstract
Energy consumption in buildings represents a challenge in the context of the reduction of greenhouse gas emissions and in a more efficient use of energy. An answer to this issue is the use of Demand side Management (DSM) systems which, through an increase in the use of technology, allow for the reduction of energy consumption. DSM systems need to be assessed during the design process by simulation tools. Moreover, they need simulation and predictive models if the control systems involved are advanced controls such as predictive or multilevel controls. With regards to multilevel controls, another important issue is the correct choice of the data model to properly structure the control systems. In this study, a real high-sensored Smart Village located in Rome composed of a smart building and a smart district of 8 buildings is taken into account. A Simulink simulator based on HAMbase is developed in order to model the building and district energy demands. The building simulator is calibrated and validated on real data taking into account the casual gain values as calibration parameters. The data are acquired in a period of 60 days during the winter of 2013. The optimal simulator configuration permits to obtain a MAPE on the daily transferred thermal energy less than 6%. Afterwards, a decision support system based on Pareto front multi-objective optimization combined with the smart building simulator is reported to show the model potential towards the definition of DSM policies. The simulator of the smart district is then derived directly from the building simulator by reprogramming the HAMbase s-function. This allows for multiple model instances in the same Simulink model. The district simulator is used to introduce the concept of data model in the context of smart districts. Finally, the accuracy of the low order grey-box models for short-term thermal behavior prediction is analyzed. An identification procedure is carried out on a real dataset acquired during the year 2015 from the sensors installed in a single building of the smart district. The identification shows that the second order resistance-capacitance (RC) models are the best choice in terms of accuracy and complexity.File | Dimensione | Formato | |
---|---|---|---|
tesi_Fonti.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
6.03 MB
Formato
Adobe PDF
|
6.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.