Nowadays many organizations use information systems to manage their processes, which generate event logs collecting data related to process executions. Process Mining (PM) techniques exploit these logs to discover, monitor and improve corresponding processes. As an open research problem, the application of PM techniques on event logs of unstructured processes tend to produce exceedingly complex models, commonly called spaghetti-like models, which provide limited support for process analysis. As a remedy, in this thesis we propose an approach aimed at extracting from event logs of unstructured processes their most relevant subprocesses, instead of end-to-end models. First we build an Instance Graph (IG) for each trace stored in the event log, representing the execution flow of the corresponding process execution. Then, we apply a Frequent Subgraph Mining technique for extracting the most relevant subgraphs (i.e., subprocesses) from the set of IGs. Since IGs built for unstructured processes usually are poor, imprecise models, we introduce a repairing procedure, to improve the quality of the final IGs. Experimental results obtained both on synthetic and real-world event logs prove that the proposed procedure significantly enhances the quality of the obtained IGs and, in turn, of the mined subprocesses. Experiments performed on real-world event logs also demonstrate the capability of our approach to derive meaningful insights about the corresponding processes. The last part of the thesis is dedicated to delve into collaboration aspects through applications and case studies. We investigate innovation support systems and the application of the approach to the analysis of networked enterprise innovation schemas. Next, we move to the problem of extracting common collaboration practices in a team, exploring also issues related to the lack of a centralized, process-aware information system. We asses advantages and limits on a set of synthetic and real-world case studies.
Oggigiorno molte organizzazioni gestiscono i propri processi attraverso sistemi informatici che registrano i dati delle esecuzioni dei processi sui cosiddetti event log. Le tecniche di Process Mining (PM) usano tali log per rappresentare, monitorare e migliorare i corrispondenti processi. Una problematica ancora aperta riguarda l’applicazione delle tecniche di PM a log di processi non strutturati, che tende a restituire modelli complessi, chiamati modelli spaghetti, che forniscono un limitato supporto all’analisi. In questa tesi si intende affrontare tale problematica proponendo un approccio per estrarre da event log di processi non strutturati i sottoprocessi più rilevanti, al posto di modelli completi. Dapprima si costruisce un Instance Graph (IG) per ogni traccia del log, rappresentante il flusso di esecuzione della relativa esecuzione di processo. Poi si applica una tecnica di Frequent Subgraph Mining per estrarre i sottografi (cioè i sottoprocessi) più rilevanti dall’insieme di IG. Poiché gli IG costruiti per processi non strutturati sono spesso modelli imprecisi, si introduce una procedura di riparazione per migliorarne la qualità. I risultati sperimentali ottenuti su event log sintetici e reali attestano che tale procedura migliora significativamente la qualità degli IG ottenuti e, quindi, dei sottoprocessi estratti. Gli esperimenti condotti su event log reali dimostrano anche la capacità dell’approccio di evidenziare aspetti significativi dei rispettivi processi. Nell’ultima parte della tesi si esplorano gli aspetti legati alla collaborazione, attraverso applicazioni e casi di studio. Si analizzano sistemi di supporto all’innovazione e l’applicazione dell’approccio all’analisi di schemi di innovazione di imprese a rete. In seguito, si affronta l’estrazione delle pratiche di collaborazione di un team, esplorando anche i problemi dovuti alla mancanza di un sistema informatico dedicato. Vantaggi e limiti vengono valutati su casi di studio sintetici e reali.
From event logs to subprocesses: supporting the analysis of unstructured processes / Genga, Laura. - (2016 Mar 04).
From event logs to subprocesses: supporting the analysis of unstructured processes
Genga, Laura
2016-03-04
Abstract
Nowadays many organizations use information systems to manage their processes, which generate event logs collecting data related to process executions. Process Mining (PM) techniques exploit these logs to discover, monitor and improve corresponding processes. As an open research problem, the application of PM techniques on event logs of unstructured processes tend to produce exceedingly complex models, commonly called spaghetti-like models, which provide limited support for process analysis. As a remedy, in this thesis we propose an approach aimed at extracting from event logs of unstructured processes their most relevant subprocesses, instead of end-to-end models. First we build an Instance Graph (IG) for each trace stored in the event log, representing the execution flow of the corresponding process execution. Then, we apply a Frequent Subgraph Mining technique for extracting the most relevant subgraphs (i.e., subprocesses) from the set of IGs. Since IGs built for unstructured processes usually are poor, imprecise models, we introduce a repairing procedure, to improve the quality of the final IGs. Experimental results obtained both on synthetic and real-world event logs prove that the proposed procedure significantly enhances the quality of the obtained IGs and, in turn, of the mined subprocesses. Experiments performed on real-world event logs also demonstrate the capability of our approach to derive meaningful insights about the corresponding processes. The last part of the thesis is dedicated to delve into collaboration aspects through applications and case studies. We investigate innovation support systems and the application of the approach to the analysis of networked enterprise innovation schemas. Next, we move to the problem of extracting common collaboration practices in a team, exploring also issues related to the lack of a centralized, process-aware information system. We asses advantages and limits on a set of synthetic and real-world case studies.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Genga.pdf
embargo fino al 31/12/2030
Descrizione: Tesi_Genga.pdf
Tipologia:
Tesi di dottorato
Licenza d'uso:
Creative commons
Dimensione
10.46 MB
Formato
Adobe PDF
|
10.46 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.