We still know little about the response of heterotrophic microbial communities to ocean acidification and the consequences for marine food webs and biogeochemical cycles. Most of our knowledge is derived from short-term perturbation experiments. In situ observational studies, exploiting natural pH gradients, can help to understand the ecosystem level effects of ocean acidification, taking into account the complex microbial interactions and environmental conditions. In this study we investigated the effects of ocean acidification on the structure and functioning of pelagic and benthic microbial food webs and biogeochemical cycling in two coastal areas of the Mediterranean Sea, characterized by naturally acidified conditions, comparable to near future (i.e., 2100) and extreme (i.e., 2500) scenarios. At Presidiana (Sicily) the natural acidification was due to freshwater input from inland, at Island of Ischia was associated with volcanic CO2 vents. Our results showed that in the sediment the acidification caused an increase of algal biomass and of extracellular enzymatic activities, with a consequently decrease of biochemical components at extremely low pH values (<7). Low pH values in seawater caused a reduction of phytoplankton biomass and of suspended organic matter and, associated to low salinity, affected negatively the extracellular enzymatic activities. However in both investigated systems, pH values expected for a near future scenario, had a significant impact on pelagic and benthic prokaryotes and viruses and on their interactions, increasing viral production and prokaryotic mortality induced by viruses. The increase of viral infection was favoured also by enhanced specific metabolic activity of single prokaryotic cells. The enhanced viral impact was associated with an alteration of bacterial assemblage composition and a reduction of bacterial diversity. Conversely extremely low pH values affected negatively the viral activity and the virus-prokaryotes interaction, reducing the viral pressure on microbial assemblage. Further studies are needed to investigate the potential impact of global climate changes on future oceans and their biogeochemical processes.
Si conosce ancora poco riguardo la risposta delle comunità microbiche eterotrofe marine all’acidificazione oceanica e le conseguenze sulle reti trofiche e i cicli biogeochimici negli oceani. La maggior parte delle nostre conoscenze derivano da esperimenti manipolativi a breve termine. Studi in situ di aree caratterizzate da naturali variazioni di pH, possono aiutare a comprendere gli effetti dell’acidificazione oceanica a livello ecosistemico, prendendo in considerazione le complesse interazioni microbiche esistenti in ambienti naturali. In questo studio abbiamo investigato gli effetti dell’acidificazione oceanica sulla struttura e il funzionamento delle reti trofiche microbiche pelagiche e bentoniche e dei cicli biogeochimici in due aree costiere del Mediterraneo, caratterizzate da naturali condizioni di acidificazione, paragonabili agli scenari futuri previsti per l’anno 2100 e 2500. A Presidiana (Sicilia) la naturale acidificazione era dovuta ad un input terrestre di acque a bassa salinità, nell’isola di Ischia era associata all’attività di vents vulcanici. I nostri risultati hanno mostrato che le condizioni di acidificazione causavano nei sedimenti un aumento della biomassa algale e delle attività enzimatiche extracellulari, con conseguente diminuzione del contenuto di materia organica a valori estremi di pH (<7). Bassi valori di pH in acqua causavano una riduzione della biomassa fitoplanctonica e della materia organica particellata e, associati a bassi valori di salinità, avevano un effetto negativo sulle attività enzimatiche extracellulari. Tuttavia in entrambi i sistemi investigati, valori di pH attesi per il 2100 hanno mostrato un significativo impatto su procarioti e virus pelagici e bentonici e sulle loro interazioni, causando un aumento della produzione virale e della mortalità procariotica indotta dai virus. L’infezione virale era favorita ulteriormente dall’aumento dell’attività enzimatica specifica delle singole cellule procariotiche. Al maggiore impatto virale era associato anche un cambiamento nella composizione di comunità batteriche e una diminuzione di diversità. Riduzioni estreme di pH sono risultate invece sfavorevoli alle attività virali influenzando negativamente le interazioni virus-procarioti e riducendo la pressione virale sulle comunità microbiche.
Impact of ocean acidification on microbial assemblages and marine biogeochemistry / Ape, Francesca. - (2014 Feb 25).
Impact of ocean acidification on microbial assemblages and marine biogeochemistry
APE, FRANCESCA
2014-02-25
Abstract
We still know little about the response of heterotrophic microbial communities to ocean acidification and the consequences for marine food webs and biogeochemical cycles. Most of our knowledge is derived from short-term perturbation experiments. In situ observational studies, exploiting natural pH gradients, can help to understand the ecosystem level effects of ocean acidification, taking into account the complex microbial interactions and environmental conditions. In this study we investigated the effects of ocean acidification on the structure and functioning of pelagic and benthic microbial food webs and biogeochemical cycling in two coastal areas of the Mediterranean Sea, characterized by naturally acidified conditions, comparable to near future (i.e., 2100) and extreme (i.e., 2500) scenarios. At Presidiana (Sicily) the natural acidification was due to freshwater input from inland, at Island of Ischia was associated with volcanic CO2 vents. Our results showed that in the sediment the acidification caused an increase of algal biomass and of extracellular enzymatic activities, with a consequently decrease of biochemical components at extremely low pH values (<7). Low pH values in seawater caused a reduction of phytoplankton biomass and of suspended organic matter and, associated to low salinity, affected negatively the extracellular enzymatic activities. However in both investigated systems, pH values expected for a near future scenario, had a significant impact on pelagic and benthic prokaryotes and viruses and on their interactions, increasing viral production and prokaryotic mortality induced by viruses. The increase of viral infection was favoured also by enhanced specific metabolic activity of single prokaryotic cells. The enhanced viral impact was associated with an alteration of bacterial assemblage composition and a reduction of bacterial diversity. Conversely extremely low pH values affected negatively the viral activity and the virus-prokaryotes interaction, reducing the viral pressure on microbial assemblage. Further studies are needed to investigate the potential impact of global climate changes on future oceans and their biogeochemical processes.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Ape.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
10.7 MB
Formato
Adobe PDF
|
10.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.