The aim of this work is to highlight the paramount importance of the availability of an electromagnetic model for the design of a system based on electromagnetic radiation for search and rescue operation of humans buried under different materials as debris, rubbers and snow slide. In this thesis the monitoring of the breathing activity, in particular the respiration frequency, of a man buried into a homogeneous lossy medium has been analyzed. The proposed system is based on the recognition of the movement of the victim due to its respiratory activity: in particular, when an electromagnetic wave impinges a human body that varies its dimension during a respiratory act, the reflected wave varies its properties as amplitude, frequency, phase or delay time is pulses are used. The geometries of the scenario and the body have been simplified in order to model the electromagnetic problem of the interaction of the body and impinging field in a closed-form. In spite of the simple formulation the results are satisfactory and show how some a priori important system requirements can be obtained, as for example the most suitable working frequency range and the choice between continuous wave and ultra-wide band pulse based system. The model is able to predict the sensitiveness in terms of phase and module variations depending on the scenario. At first the model is based on plane wave illumination of a human thorax, and then the whole body is introduced: this model was validated by numerical simulation. Afterwards in order to get a more realistic scenario the plane wave illumination was replaced with a realistic transmitting/receiving element, modeled as an equivalent aperture antenna, and the model prediction was confirmed by experimental results. The model was validated both numerically and experimentally. Thanks to the analytical model prediction, a prototype of an electromagnetic system to detect the breathing frequency was built up with laboratory equipment, and used both in laboratory and in a realistic scenario: These measurements showed the feasibility of an electromagnetic victim rescue system, and its ability to detect the respiratory activity during a simulation of a victim in a real scenario, where a victim was buried by excavated soil in a road construction site, were experimentally verified.
Lo scopo di questo lavoro è di evidenziare la fondamentale importanza di un modello elettromagnetico per la progettazione di un sistema elettromagnetico per la ricerca di esseri umani sepolti sotto macerie in caso di eventi disastrosi come terremoti, frane o valanghe. Il sistema proposto si basa sul riconoscimento del movimento della vittima causato dalla sua attività respiratoria, rilevandone in particolare la frequenza: infatti, quando un'onda elettromagnetica incide su un corpo umano che varia le sue dimensioni durante un atto respiratorio, l'onda riflessa varia di conseguenza alcune sue proprietà elettromagnetiche come l’ampiezza, la frequenza, la fase o il tempo di ritardo in caso siano usati impulsi. La geometria dello scenario e del corpo è stata semplificata per risolvere in una forma chiusa il problema elettromagnetico dell'interazione del corpo e campo interferente. Nonostante la semplice formulazione, i risultati sono soddisfacenti e mostrano come alcuni importanti requisiti di sistema possano essere ottenuti a priori, come ad esempio l’intervallo ottimale di frequenze di lavoro o la scelta tra la modalità di funzionamento a onda continua e quella basata su impulsi a banda larga. Il modello è inoltre in grado di predire la sensibilità in termini di fase e modulo variazioni in funzione dello scenario previsto. Nella sua prima formulazione, il modello è basato su illuminazione da onde piane del solo torace umano, e in seguito sono state introdotte le altre parti del corpo: questo modello è stato validato mediante simulazione numerica. In seguito, al fine di considerare uno scenario più realistico, l'illuminazione onda piana è stata sostituita con la radiazione da un’antenna ad apertura equivalente, e le predizioni del modello sono state confermate dai risultati delle misure sperimentali. Il modello è stato quindi validato sia numericamente sia sperimentalmente. Grazie alle specifiche a priori fornite dal modello analitico, è stato costruito con attrezzature di laboratorio un prototipo di un sistema elettromagnetico per rilevare la frequenza respiratoria, e tale sistema è stato testato con successo in ambiente controllato. In fine i test sono stati ripetuti in una simulazione di una vittima sepolta da terreno di scavo durante la realizzazione di una galleria in un cantiere stradale. Queste misure hanno dimostrato la validità del modello elettromagnetico proposto e la fattibilità di un sistema elettromagnetico per la ricerca di una vittima sepolta da macerie e la sua capacità di rilevare l'attività respiratoria.
Rescue of buried people: an electromagnetic model for a feasibility study and system design / De Leo, Alfredo. - (2014 Jan 15).
Rescue of buried people: an electromagnetic model for a feasibility study and system design
De Leo, Alfredo
2014-01-15
Abstract
The aim of this work is to highlight the paramount importance of the availability of an electromagnetic model for the design of a system based on electromagnetic radiation for search and rescue operation of humans buried under different materials as debris, rubbers and snow slide. In this thesis the monitoring of the breathing activity, in particular the respiration frequency, of a man buried into a homogeneous lossy medium has been analyzed. The proposed system is based on the recognition of the movement of the victim due to its respiratory activity: in particular, when an electromagnetic wave impinges a human body that varies its dimension during a respiratory act, the reflected wave varies its properties as amplitude, frequency, phase or delay time is pulses are used. The geometries of the scenario and the body have been simplified in order to model the electromagnetic problem of the interaction of the body and impinging field in a closed-form. In spite of the simple formulation the results are satisfactory and show how some a priori important system requirements can be obtained, as for example the most suitable working frequency range and the choice between continuous wave and ultra-wide band pulse based system. The model is able to predict the sensitiveness in terms of phase and module variations depending on the scenario. At first the model is based on plane wave illumination of a human thorax, and then the whole body is introduced: this model was validated by numerical simulation. Afterwards in order to get a more realistic scenario the plane wave illumination was replaced with a realistic transmitting/receiving element, modeled as an equivalent aperture antenna, and the model prediction was confirmed by experimental results. The model was validated both numerically and experimentally. Thanks to the analytical model prediction, a prototype of an electromagnetic system to detect the breathing frequency was built up with laboratory equipment, and used both in laboratory and in a realistic scenario: These measurements showed the feasibility of an electromagnetic victim rescue system, and its ability to detect the respiratory activity during a simulation of a victim in a real scenario, where a victim was buried by excavated soil in a road construction site, were experimentally verified.File | Dimensione | Formato | |
---|---|---|---|
Tesi_DeLeo.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
18.74 MB
Formato
Adobe PDF
|
18.74 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.