Starting from the increasingly demand of performance and comforts on pleasure boats, this work refers to an innovative integrated system for the simultaneous production of fresh water and electricity onboard. In particular, a 1 kWe Stirling engine coupled with a thermal desalination plant has been considered for the purpose. The prototype, which refers to the distributed micro cogeneration field, has the final aim of building and testing a single effect distillation plant with a fresh water production of about 150 l/day. Firstly, the technical and economic feasibility has been evaluated together with the potential plant performance. Then, thermodynamic theories and numerical analysis have been adopted to define the final prototype configuration. Later on, a field test phase has been carried out to evaluate the actual plant performance. Hence, a comparative analysis with a compact reverse osmosis desalination plant has been performed. In general, the experimental analysis has been in good agreement with the predicted results. In particular, at nominal operating conditions (@50°C) the maximum heat transfer rate was higher than the designed condition (5 kWt). Despite the non-ideal plant thermal insulation, fresh water production reached about 7 l/h at best operating conditions, proving a good process efficiency. Definitively, the experimental phase has provided a significant contribution to confirm and understand most of the mutual interconnections between the different key process parameters. According to the predicted behavior, fresh water production has been strongly dependent on salt content of the treated water and on temperature difference between the heating fluid and the salt water in the evaporator tank. However, even at the most severe operating conditions the thermal desalination plant has shown very interesting performance. Moreover, the apparatus exhibited a very good response to varying in time thermal power input thus confirming the opportunity to operate also powered by different forms of waste heat.

A partire dalla crescente richiesta di maggiori prestazioni e comfort a bordo delle imbarcazioni da diporto, è stato studiato e realizzato un innovativo sistema integrato per la produzione di energia elettrica ed acqua dolce. Il prototipo, che si inserisce nel filone della micro cogenerazione distribuita, prevede l'utilizzo di un motore Stirling da 1 kWe, il cui calore di risulta è utilizzato per la produzione di circa 150 l/giorno di acqua dolce per mezzo di un impianto di dissalazione termica a singolo effetto. Di tale impianto sono state inizialmente valutati la fattibilità tecnica, le caratteristiche e le prestazioni conseguibili. In seguito, studi teorici e codici di calcolo hanno portato alla definizione della configurazione finale del prototipo funzionante. A questo punto, è stata avviata la fase di caratterizzazione e di valutazione delle prestazioni effettive in comparazione con sistemi di dissalazione a membrana già in commercio. In generale, l'analisi sperimentale ha dimostrato una ottima corrispondenza delle prestazioni reali con quelle preventivate dagli studi teorici. In particolare, ai carichi nominali (@50°C) l'impianto termico ha presentato una producibilità di acqua dolce di circa 7 l/h ed una potenza termica di scambio all’evaporatore superiore a quella di progetto (5 kWt). L’analisi sperimentale, inoltre, ha contribuito alla comprensione di numerose interconnessioni tra i diversi parametri di processo. In accordo con quanto preventivato, la produzione di acqua dolce è risultata fortemente dipendente dal contenuto salino dell’acqua trattata e dalla differenza di temperatura tra il fluido termovettore caldo e l’acqua salata nel serbatoio evaporatore. Tuttavia, anche alle condizioni operative più severe l’impianto ha raggiunto prestazioni molto interessanti. In aggiunta, l’apparato ha dimostrato una risposta eccellente a potenze termiche d’ingresso variabili nel tempo, confermando l’opportunità di funzionare alimentato anche da forme differenti di calore di scarto.

Design of an onboard auxiliary power and desalination unit powered by a stirling engine / Cioccolanti, Luca. - (2014 Mar 14).

Design of an onboard auxiliary power and desalination unit powered by a stirling engine

Cioccolanti, Luca
2014-03-14

Abstract

Starting from the increasingly demand of performance and comforts on pleasure boats, this work refers to an innovative integrated system for the simultaneous production of fresh water and electricity onboard. In particular, a 1 kWe Stirling engine coupled with a thermal desalination plant has been considered for the purpose. The prototype, which refers to the distributed micro cogeneration field, has the final aim of building and testing a single effect distillation plant with a fresh water production of about 150 l/day. Firstly, the technical and economic feasibility has been evaluated together with the potential plant performance. Then, thermodynamic theories and numerical analysis have been adopted to define the final prototype configuration. Later on, a field test phase has been carried out to evaluate the actual plant performance. Hence, a comparative analysis with a compact reverse osmosis desalination plant has been performed. In general, the experimental analysis has been in good agreement with the predicted results. In particular, at nominal operating conditions (@50°C) the maximum heat transfer rate was higher than the designed condition (5 kWt). Despite the non-ideal plant thermal insulation, fresh water production reached about 7 l/h at best operating conditions, proving a good process efficiency. Definitively, the experimental phase has provided a significant contribution to confirm and understand most of the mutual interconnections between the different key process parameters. According to the predicted behavior, fresh water production has been strongly dependent on salt content of the treated water and on temperature difference between the heating fluid and the salt water in the evaporator tank. However, even at the most severe operating conditions the thermal desalination plant has shown very interesting performance. Moreover, the apparatus exhibited a very good response to varying in time thermal power input thus confirming the opportunity to operate also powered by different forms of waste heat.
14-mar-2014
A partire dalla crescente richiesta di maggiori prestazioni e comfort a bordo delle imbarcazioni da diporto, è stato studiato e realizzato un innovativo sistema integrato per la produzione di energia elettrica ed acqua dolce. Il prototipo, che si inserisce nel filone della micro cogenerazione distribuita, prevede l'utilizzo di un motore Stirling da 1 kWe, il cui calore di risulta è utilizzato per la produzione di circa 150 l/giorno di acqua dolce per mezzo di un impianto di dissalazione termica a singolo effetto. Di tale impianto sono state inizialmente valutati la fattibilità tecnica, le caratteristiche e le prestazioni conseguibili. In seguito, studi teorici e codici di calcolo hanno portato alla definizione della configurazione finale del prototipo funzionante. A questo punto, è stata avviata la fase di caratterizzazione e di valutazione delle prestazioni effettive in comparazione con sistemi di dissalazione a membrana già in commercio. In generale, l'analisi sperimentale ha dimostrato una ottima corrispondenza delle prestazioni reali con quelle preventivate dagli studi teorici. In particolare, ai carichi nominali (@50°C) l'impianto termico ha presentato una producibilità di acqua dolce di circa 7 l/h ed una potenza termica di scambio all’evaporatore superiore a quella di progetto (5 kWt). L’analisi sperimentale, inoltre, ha contribuito alla comprensione di numerose interconnessioni tra i diversi parametri di processo. In accordo con quanto preventivato, la produzione di acqua dolce è risultata fortemente dipendente dal contenuto salino dell’acqua trattata e dalla differenza di temperatura tra il fluido termovettore caldo e l’acqua salata nel serbatoio evaporatore. Tuttavia, anche alle condizioni operative più severe l’impianto ha raggiunto prestazioni molto interessanti. In aggiunta, l’apparato ha dimostrato una risposta eccellente a potenze termiche d’ingresso variabili nel tempo, confermando l’opportunità di funzionare alimentato anche da forme differenti di calore di scarto.
Thermal desalination plant
Cogeneration
Fresh water
M-CHP
Single effect distillation
File in questo prodotto:
File Dimensione Formato  
TESI_CIOCCOLANTI.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato
Licenza d'uso: Non specificato
Dimensione 7.7 MB
Formato Adobe PDF
7.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/242856
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact