The modern management of a farm cannot ignore the issues of protection of environmental resources because they are closely related to the quantity and quality of agricultural production The point source contamination is due to dispersion of little amount of high concentrated pesticides in water bodies during farm activities such as tank filling, washing and waste disposal.. A low-cost bio-prophylaxis system known as the “biobed” has been developed to prevent such water contamination. It is constituted by organic substrate able to adsorbe and degrade pesticides. The present thesis describes the bio-cleaning efficiency of an Italian biobed (BiomassBed) installed at the experimental farm of Universita` Politecnica delle Marche and designed to collect and to biologically treat both concentrated and diluted pesticide residues. It is an indirect system where all pesticide spills or water remnants of sprayers are collected in a buffer tank and allowed to re-circulate through an organic biofilter, constituted of a biomixture of pruning residues and straw able to adsorb and bio-degrade pesticides Adsorption and degradation capacity of the biobed was tested versus ten fungicides applied in vineyards for two years of field treatments. Biodepuration efficiency was expressed as percentage of pesticides retained against the total amount of pesticides discharged into BiomassBed during the spraying seasons. Accumulation and dissipation of each active ingredient was also followed in the biofilter for both first and second year of experimentation, in order to assess the time required for pesticide dissipation and to provide a safe disposal of the used biofilter. Circulation of contaminated water through an organic biofilter during a spraying period allowed to obtain an almost complete depuration from all the fungicides tested, showing a high performance of BiomassBed system Owing to its high mobility and solubility, metalaxyl M was the least retained fungicide, and it has been shown to be desorbed during water re-circulation. Dissipation of fungicides in the organic biofilter occurred rapidly with the exception of penconazole that degraded relatively slowly. Due to the advantageous combination of depuration and bio-degradation processes, fungicides were removed from water in a range of 92.4–100% of the initial concentration. Two other laboratory experiments were conducted to assess the changes induced by pesticides on the microflora presents in biomix and if these changes were temporary. In the first experiment, six fungicides, commonly used in vineyards, were chosen as model substances because they are representative of pest control strategies in the viticulture of the Mediterranean area. The evolution of microbial community of both culture-dependent and culture-independent heterotrophic bacteria and fungi were monitored to detect any possible changes as a consequence of fungicide application. A culture independent structure was monitored by using Denaturing Gradient Gel Electrophoresis (DGGE). The relationship between microorganism selection and fungicide degradation was assessed to improve the knowledge on the efficiency of the system. This experiment has confirmed that the biomixture had a good capability of degrading pesticides and that the microbial community is re-established at the end of the degradation process. Thus, a possible recycling of exhausted organic material is encouraged for agronomic purposes. Many works attributed the degradation activity of pesticides to ligninolytic. In this specific substrate, this role could have been played by yeast flora and ascomycete filamentous fungi, identified through DGGE. A particular attention should have be done to degradation of recalcitrant pesticides because they do not seem to degrade in short time and they need longer adaptation time to develop a degrading microflora. The second laboratory experiment reports the degradation of three fungicides (azoxystrobin (AZX), fludioxonil (FL) and penconazole (PC)), which are characterized by different chemical properties, metabolic target and persistence in soil, in an organic substrate constituted of pruning residues and straw. Degradation of fungicides was then related to modifications induced on metabolic activity and structure of the microbial community in terms of basal respiration, microbial biomass C-content and PLFA’s profile assay. The bio-mixture showed different ability in degrading the three fungicides. A fast degradation of AZX occurred while, FL and PC showed a recalcitrance to degradation by remaining 42.1% and 44.3%, respectively, after 120 days of incubation. A different impact of the three fungicides was observed in relation to metabolic activity and structure of the microbial community probably due to the different chemical classes and metabolic target of the molecules tested. Indeed among the three fungicides PC has showed to affect the microbial community of the biomixture more than AZX and FL. However all the metabolic and structural modifications induced were moderate and temporary and no significant differences were evident between the treated and untreated samples almost for all of the biochemical parameters tested after 60 days of the incubation period. For the entire period of the experiment fatty acids representative of bacteria did not show a significant difference for all the three fungicides applied In contrast, the fungal community showed an initial stress due to the effect of fungicide addition followed by an increase at day 30 which indicates a possible selection of resistant strains. The predominance of the fungal component at day 30 is further demonstrated by the fungi/bacteria ratio that in the fungicide treated samples was markedly higher than in the un-treated control. This different behavior was attributed to the fact that in our experiment fungicides were used, and thus, an initial depletion of the fungal community is expected. However, this initial depletion was only temporary as it is shown by the recovery of the fungal community at day 30. The degradation curves of three fungicides combined to the microbial parameters tested lead to conclude that biomixture had the suitable degraders of the AZX, while PC and FL probably degraded by a non-specific co-metabolic process since, in this study, significant changes in the bacterial community were not evidenced and, after the initial decrease, the recovery observed in the fungal community did not determine any contribution to a faster degradation of PC and FL. In conclusion the researches described in the present thesis encourage the use of organic mixture as pesticide biofilters in the Mediterranean area. In particular a substrate of pruning residues and straw has showed a high performance to adsorb and degrade fungicides with different chemical proprieties. Moreover the laboratory experiments have demonstrated that all the metabolic and structural modifications induced on microflora were moderate and temporary.
I problemi legati alla protezione delle risorse ambientali, oggigiorno non possono essere ignorati nella gestione di un’azienda agricola, perché sono strettamente correlati alla quantità e qualità della produzione. La contaminazione puntiforme, causata dalla dispersione di piccole quantità di fitofarmaco ad alta concentrazione nei corpi idrici durante le attività agricole, come il riempimento e il lavaggio di serbatoi e lo smaltimento di rifiuti, rappresenta la maggior causa di contaminazione delle acque superficiali. Per prevenire questo tipo di contaminazione è stato sviluppato un sistema di bio-profilassi a basso costo denominato “biobed”.Tale sistema è costituito da un substrato organico in grado di degradare e adsorbire i fitofarmaci in esso scaricati. La presente tesi descrive l’efficienza depurativa di un biobed italiano (BiomassBed) installato presso l'azienda agricola sperimentale dell'Universita `Politecnica delle Marche e progettato per raccogliere e trattare biologicamente residui di pesticidi sia a concentrazioni elevate sia diluiti. Il BiomassBed è un sistema indiretto in cui le acque, derivanti dal lavaggio delle attrezzature a fine trattamenti e quindi, contenenti i residui di pesticidi, vengono raccolte in una vasca e poi fatte circolare, grazie a una pompa, attraverso il biofiltro organico. Tale substrato è costituito da un biomix di residui di potatura e paglia in grado di adsorbire e di degradare i fitofarmaci. L’efficienza di adsorbimento di degradazione del BiomassBed è stata testata rispetto a dieci fungicidi applicati al vigneto per due anni di stagione vegetativa. L’efficienza bio-depurativa è stata espressa come percentuale di fitofarmaco trattenuto rispetto alla quantità totale di fitofarmaci scaricati. E’ stata inoltre misurata anche la dissipazione di ogni principio attivo nel biofiltro per i due anni di sperimentazione, al fine di valutare il tempo necessario per la dissipazione dei fitofarmaci nel substrato di modo da permetterne lo smaltimento sicuro. I risultati hanno evidenziato che il ricircolo delle acque contaminate attraverso il materiale organico permette una quasi totale depurazione di tutti i fungicidi testati, dimostrando un elevato rendimento del sistema BiomassBed con la sola eccezione del metalaxil M. Questo, infatti data la sua elevata mobilità e solubilità, in parte veniva desorbito durante il ricircolo dell'acqua. Per quel che riguarda la dissipazione dei fungicidi nel biofiltro questa è avvenuta piuttosto rapidamente con l'eccezione del penconazolo che degradava in modo relativamente lento. Tuttavia, grazie alla combinazione vantaggiosa di depurazione e bio-degradazione, i fungicidi venivano rimossi dall'acqua del 92,4-100% rispetto alla concentrazione iniziale. Per valutare le modifiche indotte dai fitofarmaci sulla microflora presente nel biomix, sono stati condotti due esperimenti di laboratorio. Nel primo esperimento sono stati scelti sei fungicidi comunemente utilizzati nella difesa dei vigneti del bacino del Mediterraneo. Tramite analisi DGGE è stata monitorata l’evoluzione nel biomix della comunità microbica, sia batterica che fungina, a seguito dei trattamenti fungicidi per valutare meglio l’efficienza del sistema. I risultati hanno confermato una buona capacità del biomix a degradare i fitofarmaci e hanno dimostrato che la comunità microbica viene ristabilita a livelli del controllo al termine del processo di degrado. Questo garantisce uno smaltimento sicuro da un punto di vista chimico e microbiologico del substrato organico a fini agronomici. Molti lavori di letteratura attribuiscono l’attività di degradazione a funghi di tipo ligninolitico. In questo specifico substrato, invece si è evidenziata la selezione di ceppi di lieviti e funghi filamentosi come gli ascomiceti, identificati tramite l’analisi DGGE. Tuttavia in questo lavoro alcuni fitofarmaci come fludioxonil e penconazolo sono risultati recalcitranti alla degradazione e sembra che necessitino di un tempo maggiore per la selezione di una microflora degradante. Infine è stato condotto un secondo esperimento di laboratorio con applicazioni in singolo di azoxystrobin (AZX), fludioxonil (FL) e penconazolo (PC) allo stesso substrato per meglio indagare sulle interazioni tra microrganismi e fitofarmaci, caratterizzati da proprietà chimiche, target metabolici e persistenza nel suolo diversi. Quindi sono state confrontate le curve di degradazione con le modificazioni indotte sulla attività metaboliche (misurate in termini di respirazione basale e contenuto di carbonio biomassa) e sulla struttura microbica saggiata con l’analisi PLFA. Anche in questo caso nel biomix l’AZX si è degradato rapidamente, mentre FL e PC avevano dei residui pari al 42,1% e 44,3% della concentrazione iniziale dopo 120 giorni di incubazione. Inoltre PC ha dimostrato un maggior impatto rispetto a FL e AZX sia sull’attività metabolica sia sulle modificazioni della struttura della comunità microbica. Tuttavia le modificazioni indotte sono state moderate e temporanee, infatti a 60 giorni si recuperano in tutte le analisi i livelli del controllo. Inoltre dall’analisi del profilo degli acidi grassi non si nota una differenza significativa nelle modifiche della comunità batterica a seguito dei trattamenti. Al contrario, la comunità fungina ha mostrato uno stress iniziale a 7 giorni, per effetto dell’applicazione del fungicida, seguito da un recupero al giorno 30, indice di una possibile selezione di ceppi resistenti. La predominanza della componente fungina al giorno 30 è ulteriormente dimostrata dal rapporto funghi / batteri risultato nettamente superiore nei campioni trattati con fungicidi rispetto al controllo. Questa differenza di comportamento tra comunità batterica e fungina è stato attribuito al fatto che nel nostro esperimento sono stati utilizzati dei fungicidi che hanno, in un primo momento, depresso la comunità fungina che verso i 30 giorni si è selezionata e ha recuperato. Le curve di degradazione dei tre fungicidi combinate con i parametri microbiologici portano a concludere che nel biomix l’AZX si degrada, mentre FL e PC, più recalcitranti, necessitano di un tempo maggiore per selezionare una microflora specifica per la loro degradazione. Infatti la loro degradazione sembrerebbe di tipo co-metabolica, non-specifica in quanto non si nota una corrispondenza tra la selezione della comunità fungina a 30 giorni e un’accelerazione dei processi degradativi di PC e FL. In conclusione, le ricerche descritte nella presente tesi incoraggiano l'uso dei biofiltri per l’adsorbimento e la degradazione di fitofarmaci organici nel bacino del Mediterraneo. In particolare, un substrato costituito da residui di potatura e paglia, ha mostrato un rendimento elevato di adsorbimento e degradazione di fungicidi con proprietà chimiche diverse. Inoltre gli esperimenti di laboratorio hanno dimostrato che tutte le modificazioni metaboliche e strutturali indotte sulla microflora sono state moderate e temporanee.
Adsorption and degradation of pesticides in organic substrates used in "biobeds" and interferences with microbial community / Marinozzi, Maria. - (2012 Mar 09).
Adsorption and degradation of pesticides in organic substrates used in "biobeds" and interferences with microbial community
Marinozzi, Maria
2012-03-09
Abstract
The modern management of a farm cannot ignore the issues of protection of environmental resources because they are closely related to the quantity and quality of agricultural production The point source contamination is due to dispersion of little amount of high concentrated pesticides in water bodies during farm activities such as tank filling, washing and waste disposal.. A low-cost bio-prophylaxis system known as the “biobed” has been developed to prevent such water contamination. It is constituted by organic substrate able to adsorbe and degrade pesticides. The present thesis describes the bio-cleaning efficiency of an Italian biobed (BiomassBed) installed at the experimental farm of Universita` Politecnica delle Marche and designed to collect and to biologically treat both concentrated and diluted pesticide residues. It is an indirect system where all pesticide spills or water remnants of sprayers are collected in a buffer tank and allowed to re-circulate through an organic biofilter, constituted of a biomixture of pruning residues and straw able to adsorb and bio-degrade pesticides Adsorption and degradation capacity of the biobed was tested versus ten fungicides applied in vineyards for two years of field treatments. Biodepuration efficiency was expressed as percentage of pesticides retained against the total amount of pesticides discharged into BiomassBed during the spraying seasons. Accumulation and dissipation of each active ingredient was also followed in the biofilter for both first and second year of experimentation, in order to assess the time required for pesticide dissipation and to provide a safe disposal of the used biofilter. Circulation of contaminated water through an organic biofilter during a spraying period allowed to obtain an almost complete depuration from all the fungicides tested, showing a high performance of BiomassBed system Owing to its high mobility and solubility, metalaxyl M was the least retained fungicide, and it has been shown to be desorbed during water re-circulation. Dissipation of fungicides in the organic biofilter occurred rapidly with the exception of penconazole that degraded relatively slowly. Due to the advantageous combination of depuration and bio-degradation processes, fungicides were removed from water in a range of 92.4–100% of the initial concentration. Two other laboratory experiments were conducted to assess the changes induced by pesticides on the microflora presents in biomix and if these changes were temporary. In the first experiment, six fungicides, commonly used in vineyards, were chosen as model substances because they are representative of pest control strategies in the viticulture of the Mediterranean area. The evolution of microbial community of both culture-dependent and culture-independent heterotrophic bacteria and fungi were monitored to detect any possible changes as a consequence of fungicide application. A culture independent structure was monitored by using Denaturing Gradient Gel Electrophoresis (DGGE). The relationship between microorganism selection and fungicide degradation was assessed to improve the knowledge on the efficiency of the system. This experiment has confirmed that the biomixture had a good capability of degrading pesticides and that the microbial community is re-established at the end of the degradation process. Thus, a possible recycling of exhausted organic material is encouraged for agronomic purposes. Many works attributed the degradation activity of pesticides to ligninolytic. In this specific substrate, this role could have been played by yeast flora and ascomycete filamentous fungi, identified through DGGE. A particular attention should have be done to degradation of recalcitrant pesticides because they do not seem to degrade in short time and they need longer adaptation time to develop a degrading microflora. The second laboratory experiment reports the degradation of three fungicides (azoxystrobin (AZX), fludioxonil (FL) and penconazole (PC)), which are characterized by different chemical properties, metabolic target and persistence in soil, in an organic substrate constituted of pruning residues and straw. Degradation of fungicides was then related to modifications induced on metabolic activity and structure of the microbial community in terms of basal respiration, microbial biomass C-content and PLFA’s profile assay. The bio-mixture showed different ability in degrading the three fungicides. A fast degradation of AZX occurred while, FL and PC showed a recalcitrance to degradation by remaining 42.1% and 44.3%, respectively, after 120 days of incubation. A different impact of the three fungicides was observed in relation to metabolic activity and structure of the microbial community probably due to the different chemical classes and metabolic target of the molecules tested. Indeed among the three fungicides PC has showed to affect the microbial community of the biomixture more than AZX and FL. However all the metabolic and structural modifications induced were moderate and temporary and no significant differences were evident between the treated and untreated samples almost for all of the biochemical parameters tested after 60 days of the incubation period. For the entire period of the experiment fatty acids representative of bacteria did not show a significant difference for all the three fungicides applied In contrast, the fungal community showed an initial stress due to the effect of fungicide addition followed by an increase at day 30 which indicates a possible selection of resistant strains. The predominance of the fungal component at day 30 is further demonstrated by the fungi/bacteria ratio that in the fungicide treated samples was markedly higher than in the un-treated control. This different behavior was attributed to the fact that in our experiment fungicides were used, and thus, an initial depletion of the fungal community is expected. However, this initial depletion was only temporary as it is shown by the recovery of the fungal community at day 30. The degradation curves of three fungicides combined to the microbial parameters tested lead to conclude that biomixture had the suitable degraders of the AZX, while PC and FL probably degraded by a non-specific co-metabolic process since, in this study, significant changes in the bacterial community were not evidenced and, after the initial decrease, the recovery observed in the fungal community did not determine any contribution to a faster degradation of PC and FL. In conclusion the researches described in the present thesis encourage the use of organic mixture as pesticide biofilters in the Mediterranean area. In particular a substrate of pruning residues and straw has showed a high performance to adsorb and degrade fungicides with different chemical proprieties. Moreover the laboratory experiments have demonstrated that all the metabolic and structural modifications induced on microflora were moderate and temporary.File | Dimensione | Formato | |
---|---|---|---|
tesi.Marinozzi.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.