The European Common Agricultural Policy is one of the major drivers of change in rural landscapes. This study is focused on the Standards of Good Agricultural and Environmental Condition (GAEC) as part of the Cross Compliance requirements in the framework of Pillar I (Direct Payment) and of the objectives of Pillar II (Rural Development). In particular, it focuses on the implementation of the standard GAEC 5.2 “Buffer Strips” along watercourses, which was introduced in Italy in January 2011, and was adopted by the Marche Region in early 2012. This study has two main aims: the first is to characterize the rural areas, where the CAP regulations have an important role; the second is to develop appropriate strategies to assess and guide the impact of the implementation of new measures like GAEC 5.2, on the rural landscape, using innovative tools for data analysis and integration. Thus, the first aspect of this study was to develop a framework of analysis to improve the characterization of rural areas in a GIS environment. According to the National Strategic Plan for Rural Development, the Marche Region adopted a definition of rural areas based on population density, along the lines of the recommendations of the OECD. This subdivided the region in five different gradients of ‘rurality’ that are strictly delimited by administrative boundaries, and ignore the spatial structural aspects of the rural patterns. To overcome this limitation, we have improved the characterization of the rural settings at a regional scale by building in a new layer that is based on both landscape metrics and socio-economic descriptors. This has been applied to three test areas in the Marche Region. The methodology makes use of statistical (i.e., PCA and Varimax) and clustering (i.e., K-Means) analyses. Through several analyses of intersections dealt with in a GIS environment, and several steps of semantic interpretation, we obtained the spatial integration of the descriptors. These “Integrated Territorial Descriptors” describe a specific area through definition of the different gradients of rurality. These different Integrated Territorial Descriptors defined for each test area have been aggregated into the Integrated Homogeneous Macro-Descriptors, to allow comparisons between the three test areas. In the second part of the study, we performed several analyses based on a multi-scale approach in the GIS environment, at two different spatial scales: regional and local. At the regional level, EU CLUE Scanner 100 was used as forecasting model. This model allows for different implementation scenarios based on the Corine Land Cover across the whole of Europe. These results were used to identify three test areas of about 1500 km2 each. At the local scale, a parametric GIS-Script model was tested, which was developed at KU Leuven as an instrument to address the choice of the optimal location and typology of buffer strips at the parcel and local scales. In this step, a first model was tested with a dataset for the Marche Region. The results shown what the critical points are to improve the use of the parameters evaluated by the model. Overall, this study represents an important step towards the development of novel strategies using innovative analytical tools for the appropriate assessment of land use and planning in rural areas.
L’obiettivo di questa ricerca di dottorato è stato quello di approfondire alcuni aspetti legati all’applicazione delle normative previste dalle Politiche Agricole Comunitarie (PAC) nelle aree rurali. Nello specifico, ha trattato l’impiego di strumenti informativi territoriali (GIS) come validi supporti sia per analizzare le dinamiche che intervengono nel paesaggio rurale, sia per accompagnare l’implementazione di norme che subordinano l’ottenimento di aiuti al reddito al rispetto di requisiti ambientali, introdotte dalla Politica Agricola Comunitaria (PAC) attraverso la cosiddetta condizionalità. L’implementazione dell’ultimo Standard BCAA 5.2, che ha introdotto le fasce tampone, ha rappresentato un’occasione importante di riflessione e di approfondimento scientifico che coinvolge diversi aspetti territoriali locali, sia sotto il profilo ecologico e funzionale sia dal punto di vista estetico-paesaggistico. In questa ottica, la ricerca ha tentato di approfondire due aspetti principali. Il primo ha riguardato la caratterizzazione delle aree rurali, le quali rappresentano ambiti territoriali in cui la regolamentazione PAC gioca un ruolo importante. Allo stato attuale, la Regione Marche ha suddiviso il territorio regionale, su base comunale, in cinque tipologie di aree rurali, basandosi sul criterio della densità di popolazione, in accordo con i criteri proposti dalla OCSE, senza tenere in considerazione la componente strutturale del territorio. Le elaborazioni proposte in questa parte della ricerca, tentano di migliorare questa caratterizzazione attraverso la costruzione, in ambiente GIS, di indicatori spaziali integrati che tengono conto della dimensione strutturale del territorio (landscape metrics) e della sua componente socio-economica. La sperimentazione è stata applicata in tre aree test della regione Marche. La metodologia ha visto l’impiego di analisi, in ambiente GIS, di intersezione spaziali delle due componenti, integrate con analisi statistiche (PCA e Varimax) e analisi di clustering (K-Means). Al termine dell’elaborazione sono stati ottenuti dei Descrittori Integrati Spaziali Territoriali i quali descrivono i diversi gradienti della ruralità nelle tre aree test. Questi ultimi sono stati riaggregati in Descrittori Integrati Omogenei, per consentire la comparazione tra le tre aree test. Il secondo aspetto preso in considerazione nella ricerca, riguarda l’impiego di strumenti informativi geografici, utili per valutare e guidare l’implementazione di nuove misure, come la BCCA 5.2, nelle aree rurali. Questo è stato affrontato attraverso delle analisi multi scalari, condotte in ambiente GIS. Le elaborazioni hanno riguardato due differenti scali spaziali, la scala regionale e quella di bacino. La scala regionale ha visto l’impiego di modello previsionale dinamico, EU CLUE Scanner 100, grazie alla collaborazione del Joint Research Centre (Ispra). Il modello ha proposto due scenari di implementazione della BCAA 5.2 per la Regione Marche, sulla base del Corine Land Cover. I risultati hanno permesso di eseguire delle analisi qualitative di piccola scala, al termine delle quali sono state selezionate tre test, sulle quali si è proceduto con gli approfondimenti eseguiti alla scala di bacino. Alla scala di bacino, quindi sulle tre aree test, è stato testato un modello parametrico (Gis-Script) progettato alla KU Leuven (Belgio). Il modello è stato sviluppato per individuare le potenziali aree di implementazione della BCAA 5.2. in Belgio, inoltre propone delle tipologie standard di fasce tampone sulla base delle caratteristiche morfologiche delle aree individuate. In questa parte della ricerca è stato eseguito un primo test, utilizzando i dati marchigiani, con l’obbiettivo di valutare la trasferibilità della sperimentazione al caso regionale marchigiano. I risultati hanno mostrato quali sono i punti critici dei criteri di parametrizzazione del modello, sui quali sviluppare ulteriori approfondimenti al fine di ottenere un modello applicabile al territorio marchigiano.
Condizionalità e paesaggio rurale: metodi e strumenti di supporto all’implementazione dello standard 5.2 “buffer strip” nel caso di studio Regione Marche / Piselli, Valentina. - (2014 Mar 03).
Condizionalità e paesaggio rurale: metodi e strumenti di supporto all’implementazione dello standard 5.2 “buffer strip” nel caso di studio Regione Marche
Piselli, Valentina
2014-03-03
Abstract
The European Common Agricultural Policy is one of the major drivers of change in rural landscapes. This study is focused on the Standards of Good Agricultural and Environmental Condition (GAEC) as part of the Cross Compliance requirements in the framework of Pillar I (Direct Payment) and of the objectives of Pillar II (Rural Development). In particular, it focuses on the implementation of the standard GAEC 5.2 “Buffer Strips” along watercourses, which was introduced in Italy in January 2011, and was adopted by the Marche Region in early 2012. This study has two main aims: the first is to characterize the rural areas, where the CAP regulations have an important role; the second is to develop appropriate strategies to assess and guide the impact of the implementation of new measures like GAEC 5.2, on the rural landscape, using innovative tools for data analysis and integration. Thus, the first aspect of this study was to develop a framework of analysis to improve the characterization of rural areas in a GIS environment. According to the National Strategic Plan for Rural Development, the Marche Region adopted a definition of rural areas based on population density, along the lines of the recommendations of the OECD. This subdivided the region in five different gradients of ‘rurality’ that are strictly delimited by administrative boundaries, and ignore the spatial structural aspects of the rural patterns. To overcome this limitation, we have improved the characterization of the rural settings at a regional scale by building in a new layer that is based on both landscape metrics and socio-economic descriptors. This has been applied to three test areas in the Marche Region. The methodology makes use of statistical (i.e., PCA and Varimax) and clustering (i.e., K-Means) analyses. Through several analyses of intersections dealt with in a GIS environment, and several steps of semantic interpretation, we obtained the spatial integration of the descriptors. These “Integrated Territorial Descriptors” describe a specific area through definition of the different gradients of rurality. These different Integrated Territorial Descriptors defined for each test area have been aggregated into the Integrated Homogeneous Macro-Descriptors, to allow comparisons between the three test areas. In the second part of the study, we performed several analyses based on a multi-scale approach in the GIS environment, at two different spatial scales: regional and local. At the regional level, EU CLUE Scanner 100 was used as forecasting model. This model allows for different implementation scenarios based on the Corine Land Cover across the whole of Europe. These results were used to identify three test areas of about 1500 km2 each. At the local scale, a parametric GIS-Script model was tested, which was developed at KU Leuven as an instrument to address the choice of the optimal location and typology of buffer strips at the parcel and local scales. In this step, a first model was tested with a dataset for the Marche Region. The results shown what the critical points are to improve the use of the parameters evaluated by the model. Overall, this study represents an important step towards the development of novel strategies using innovative analytical tools for the appropriate assessment of land use and planning in rural areas.File | Dimensione | Formato | |
---|---|---|---|
Tesi.Piselli.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
5.36 MB
Formato
Adobe PDF
|
5.36 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.