The present work aims to make a comparison between different sun‘s cold technologies ―Ice maker ―; These machines could be thermally powered by (solar thermal energy adsorption or absorption) or electrically (FV- vapor Compression) The work begins with an introduction, that explains the advantages of solar Ice maker: Self-sufficiency, Health and non-toxicity, Ecological sustainability, Social and Economic factors. I mentioned at the beginning the topic of the PV and thermal solar collectors, which will be used to drive these machines, and then i illustrated in the thermodynamic cycle of the machines mentioned above. Then i studied the adsorption machine (methanol-activated charcoal) powered by a solar thermal Panel. Starting from a mathematical model and fixed and dynamic data (temperature and radiation) inserting them in a software that gives us the dynamic simulation results, then it was discussed the parametric analysis and design of all components (solar collector, condenser, evaporator, ...) The second machine was the solar absorption (water-lithium bromide) powered by solar thermal Panel. Doing the same procedure of first mathematical model input data  dynamic simulationresultsparametric analysis (without studying the machine design). For the third machine the vapor compression (R-600a) powered by polycrystalline Panel and DC motor. Doing the same procedure just over mentioned. The final comparison between these three machines was done based on comparing index (Ice quantity per day/Panel surface, STR, Lowers temperatures reached ...) to find that the best machine is the solar adsorption. The next step is to go beyond dynamic simulation, and to Design/install these three machines in the same climate zone (sub-Saharan Africa) studying the effective machines run and to establish which one is the best in the same operating conditions.

Il presente lavoro mira a fare un confronto con diverse tecnologie del freddo dal sole ‗Ice maker‘; Queste macchine potrebbero essere alimentate termicamente (solare termico-adsorbimento o assorbimento) oppure elettricamente (FV-Compressione vapore) Il lavoro inizia con un‘introduzione che spiega i vantaggi del solar Ice maker: autonomia, salute e non tossicità, eco sostenibilità e per fattori socio economici. Ho trattato all‘inizio l‘argomento dei captatori solari sia termici sia fotovoltaici, che serviranno ad alimentare le macchine, sono stati illustrati in seguito i cicli termodinamici delle macchine sopra citate. Poi abbiamo studiato una macchina ad adsorbimento (metanolo-carbone attivo) alimentato da un panello solare termico. Partendo dal modello matematico e dei dati fissi e dinamici (radiazione e temperatura) inserendoli in un software dava i risultati della simulazione dinamica, poi è stata trattata l‘analisi parametrica e alla fine il dimensionamento di tutti i componenti (collettore solare, condensatore, evaporatore…) La seconda macchina era quella ad assorbimento solare (acqua-Bromuro di litio) alimentata da panello solare termico. Facendo la stessa procedura di prima modello matematicodati dentrosimulazione dinamicarisultatianalisi parametrica (senza studiare il dimensionamento). Invece per la terza macchina si tratta compressione di vapore (R-600a) alimentato con panello policristallino e motore DC. Facendo la stessa procedura appena citata. Il confronto finale tra queste tre macchine è stato fatto basandoci su indici di confronto (quantità ghiaccio al giorno/ superfice panello, rendimento, minime temperature raggiunte…) per stabilirne che quella a adsorbimento sia la migliore. Il passo successivo è oltrepassare la simulazione dinamica, e Progettare/installare le tre macchine nella stessa zona climatica (Africa subsahariana) e studiare realmente il funzionamento in sito e stabilirne quale macchina sia la migliore nelle stesse condizioni operative.

Sistemi solari stand-alone per il mantenimento della catena del freddo / Maoulaoui, Khaled. - (2013 Feb 28).

Sistemi solari stand-alone per il mantenimento della catena del freddo

Maoulaoui, Khaled
2013-02-28

Abstract

The present work aims to make a comparison between different sun‘s cold technologies ―Ice maker ―; These machines could be thermally powered by (solar thermal energy adsorption or absorption) or electrically (FV- vapor Compression) The work begins with an introduction, that explains the advantages of solar Ice maker: Self-sufficiency, Health and non-toxicity, Ecological sustainability, Social and Economic factors. I mentioned at the beginning the topic of the PV and thermal solar collectors, which will be used to drive these machines, and then i illustrated in the thermodynamic cycle of the machines mentioned above. Then i studied the adsorption machine (methanol-activated charcoal) powered by a solar thermal Panel. Starting from a mathematical model and fixed and dynamic data (temperature and radiation) inserting them in a software that gives us the dynamic simulation results, then it was discussed the parametric analysis and design of all components (solar collector, condenser, evaporator, ...) The second machine was the solar absorption (water-lithium bromide) powered by solar thermal Panel. Doing the same procedure of first mathematical model input data  dynamic simulationresultsparametric analysis (without studying the machine design). For the third machine the vapor compression (R-600a) powered by polycrystalline Panel and DC motor. Doing the same procedure just over mentioned. The final comparison between these three machines was done based on comparing index (Ice quantity per day/Panel surface, STR, Lowers temperatures reached ...) to find that the best machine is the solar adsorption. The next step is to go beyond dynamic simulation, and to Design/install these three machines in the same climate zone (sub-Saharan Africa) studying the effective machines run and to establish which one is the best in the same operating conditions.
28-feb-2013
Il presente lavoro mira a fare un confronto con diverse tecnologie del freddo dal sole ‗Ice maker‘; Queste macchine potrebbero essere alimentate termicamente (solare termico-adsorbimento o assorbimento) oppure elettricamente (FV-Compressione vapore) Il lavoro inizia con un‘introduzione che spiega i vantaggi del solar Ice maker: autonomia, salute e non tossicità, eco sostenibilità e per fattori socio economici. Ho trattato all‘inizio l‘argomento dei captatori solari sia termici sia fotovoltaici, che serviranno ad alimentare le macchine, sono stati illustrati in seguito i cicli termodinamici delle macchine sopra citate. Poi abbiamo studiato una macchina ad adsorbimento (metanolo-carbone attivo) alimentato da un panello solare termico. Partendo dal modello matematico e dei dati fissi e dinamici (radiazione e temperatura) inserendoli in un software dava i risultati della simulazione dinamica, poi è stata trattata l‘analisi parametrica e alla fine il dimensionamento di tutti i componenti (collettore solare, condensatore, evaporatore…) La seconda macchina era quella ad assorbimento solare (acqua-Bromuro di litio) alimentata da panello solare termico. Facendo la stessa procedura di prima modello matematicodati dentrosimulazione dinamicarisultatianalisi parametrica (senza studiare il dimensionamento). Invece per la terza macchina si tratta compressione di vapore (R-600a) alimentato con panello policristallino e motore DC. Facendo la stessa procedura appena citata. Il confronto finale tra queste tre macchine è stato fatto basandoci su indici di confronto (quantità ghiaccio al giorno/ superfice panello, rendimento, minime temperature raggiunte…) per stabilirne che quella a adsorbimento sia la migliore. Il passo successivo è oltrepassare la simulazione dinamica, e Progettare/installare le tre macchine nella stessa zona climatica (Africa subsahariana) e studiare realmente il funzionamento in sito e stabilirne quale macchina sia la migliore nelle stesse condizioni operative.
Freddo solare
Ice maker
Stand-alone refrigerazione
Solar cooling
File in questo prodotto:
File Dimensione Formato  
Tesi.Maoulaoui.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato
Licenza d'uso: Non specificato
Dimensione 4.05 MB
Formato Adobe PDF
4.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/242736
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact