The work is mainly focused on issues such as: control system and energy management in Hybrid Electric Vehicle (HEV) and / or powered by Fuel Cell (FCEV), with particular attention to Energy Storage System and its management. In details, the research activity is focalize on: the powertrain model based design and optimization, the lithium batteries characterization and modeling, and Battery Management and optimization System thematics. In order to support and optimize the HEV powertrain design, and the control system strategy development, it is presented and validated a Simulink toolbox created ad hoc. This toolbox permit to optimize the powertrain right from the early stages of design. The models are developed to be fully parameterized and scalable, and adaptable to the different component size and powertrain technologies available today. The simulation tool in addition to providing results that are very close to those actually achieved in real situations, it can perform the first analysis and testing of control algorithms developed. In this way the development of algorithms and control strategies takes place in parallel to the design of other vehicle components allowing a considerable time reduction in overall development process. Particular attention is given to the storage systems modeling and characterization. Several models and approve has been propose to simulate the dynamic behavior and battery degradation in real operative conditions. The lithium battery models are used also to affront the problem of non-homogeneity in battery pack that has an impact in the reliability and performances and lowering costs of Electric Vehicles. In order to minimize the intense balancing activity impact in the Battery Management System, has been developed a cells grouping technique. All the cells that exhibit similar behavior in the operational field are aggregated. The optimization of the battery pack overall efficiency is based on neural networks SOM (Self Organization Map), in order to minimize the energy lose during the cells balance with a precise characterization, modeling and aggregation of the same. In this way, it is possible to maximize the useful energy in the battery pack at each vehicle cycle. The final aim of this works is the Battery Management System development with specially attention at the battery control strategies and their implementation. The Battery Management System (BMS) is an essential component within a multiple cell battery pack. It monitors the state of a battery, measuring and controlling key operational parameters, and thus ensuring safety. Lithium ion cells have high energy density so abuse of the cell can cause a thermal runaway leading to a cell fire and explosion. The single cells have safety devices and the battery has a safety circuit that monitors each cell and prevents over-charging and over-discharging. For this reason a AUTOSAR compliant BMS are developed. The AUTOSAR aims to establish a standard that will serve as a platform upon which future vehicle applications will be implemented and will also serve to minimize the current barriers between functional domains (vehicle centric versus passenger centric). In the BMS application software is present several software components, model based, with control strategies able to ensures the best lithium cells performance in completely safety. In details has been developed: a charge and discharge control for to maximize the battery life cycle, a cells balancing with a minimization of energy lose, an accurate cell impedance tracking, an State Of Charge (SOC) and State Of Health (SOH) estimator.
Il lavoro è focalizzato in problematiche quali: sistemi di controllo e gestione dell’energia in veicoli elettrici ed ibridi (Hybrids and Electrics Vehicle: HEV) e/o alimentati a fule cells (FCEV), con particolare attenzione al sistema di accumulo dell’energia ed alla sua gestione. In dettaglio, l’attività di ricerca è incentrata su: la progettazione e l’ottimizzazione model based del sistema di trazione (Powertrain), la modellazione e la caratterizzazione delle batterie a litio, e tematiche del sistema di gestione delle batterie (Battery Management System: BMS). Al fine di supportare ed ottimizzare la progettazione di un powertrain di un veicolo, sono stati sviluppati e validati i modelli dei principali componenti presenti nei veicoli, ottenendo un tool di simulazione Simulink in grado di ottimizzare il powertrain già dalle prime fasi di progettazione. I modelli sviluppati risultano essere completamente parametrizzati e scalabili, quindi adattabili alle varie gamme e tecnologie di compienti ad oggi utilizzati in un veicolo. Il tool di simulazione oltre a fornire dei risultati molto vicini a quelli realmente ottenuti in situazioni reali, consente di effettuare le prime analisi e test degli algoritmi di controllo che andranno ad essere implementati nei componenti elettronici presenti sul veicolo. In questo modo lo sviluppo degli algoritmi e della strategie di controllo avviene di pari passo alla progettazione degli altri componenti del veicolo consentendo una notevole diminuzione dei tempi di sviluppo complessivi del powertrain. Particolare attenzione è stato dato allo sviluppo di modelli in grado di caratterizzare il comportamento dei sistemi di accumulo. In particolare si sono focalizzati i sistemi di accumulo con tecnologie a litio. Sono stati sviluppati modelli in grado di simulare il funzionamento dinamico ed il deterioramento dovuto all’utilizzo di accumulatori litio in condizioni reali. Una delle problematiche affrontate ha riguardato il bilanciamento delle celle a litio che come noto hanno al necessità di essere continuamente monitorate e gestite al fine di consentirne un impiego efficace e sicuro. Infatti la tecnologia a litio richiede la presenza di un elettronica di controllo che, tra la atre cose, si occupi di limitare gli squilibri, in termini di energia utile, tra le celle a litio che compongono un battery system. Al fine di ridurre al minimo l’impatto che una attività di bilanciamento intensa ha sull’elettronica, si è messo a punto una tecnica/procedura di raggruppamento delle celle che presentano un comportamento simile in sede operativa. L’ottimizzazione dell’efficienza complessiva del energy storage system è stata attuata mediante tecniche di clustering basate su reti neurali SOM (Self Organization Map) al fine di minimizzare l’energia persa durante le fasi di bilanciamento delle celle e con una accurate caratterizzazione, modellazione ed aggregazione delle stesse. In questo modo si è riusciti a massimizzare l’energia utile all’interno del pacco batterie ad ogni ciclo di lavoro del veicolo. L’attività conclusiva ha visto lo sviluppo dell’elettronica e delle strategie di controllo del pacco batterie, il Battery Management System (BMS). Una corretta ottimizzazione, controllo e gestione del pacco batteria abbinata ad una cooperazione con i restanti componenti presenti sul veicolo ha consentito di ottenere interessanti risultati dal punto di vista dell’efficienza complessiva del sistema, un aumento della vita utile ed un miglior sfruttamento del pacco batteria. Tutta l’attività di sviluppo degli algoritmi di controllo del BMS è stata effettuata mediante tecniche model based e tecniche di auto-generazione del codice e del software di basso livello secondo lo standard AUTOSAR previsto dall’automotive. L’AUTOSAR è uno standard che definisce ed organizza la struttura software dei dispositivi elettronici il fine di abbattere le barriere che oggi esistono tra i domini funzionali dei dispositivi presenti sul veicolo (dominio incentrato sul veicolo ed incentrato sul passeggero). Il BMS implementa un monitoraggio e controllo delle celle a litio, attua strategie di gestione volte a garantire la safety ed il corretto bilanciamento delle celle in modo da massimizzare l’efficienza e le prestazioni del pacco batteria. Il BMS fornisce, inoltre, una accurata stima della carica residua (SOC), dello stato di salute delle celle (SOH), ed altri parametri sensibili, quali la l’impedenze interna delle celle.
Energy, storage system, control, management and optimization in the hybrids and electrics road vehicles(2012 Feb 28).
Energy, storage system, control, management and optimization in the hybrids and electrics road vehicles
-
2012-02-28
Abstract
The work is mainly focused on issues such as: control system and energy management in Hybrid Electric Vehicle (HEV) and / or powered by Fuel Cell (FCEV), with particular attention to Energy Storage System and its management. In details, the research activity is focalize on: the powertrain model based design and optimization, the lithium batteries characterization and modeling, and Battery Management and optimization System thematics. In order to support and optimize the HEV powertrain design, and the control system strategy development, it is presented and validated a Simulink toolbox created ad hoc. This toolbox permit to optimize the powertrain right from the early stages of design. The models are developed to be fully parameterized and scalable, and adaptable to the different component size and powertrain technologies available today. The simulation tool in addition to providing results that are very close to those actually achieved in real situations, it can perform the first analysis and testing of control algorithms developed. In this way the development of algorithms and control strategies takes place in parallel to the design of other vehicle components allowing a considerable time reduction in overall development process. Particular attention is given to the storage systems modeling and characterization. Several models and approve has been propose to simulate the dynamic behavior and battery degradation in real operative conditions. The lithium battery models are used also to affront the problem of non-homogeneity in battery pack that has an impact in the reliability and performances and lowering costs of Electric Vehicles. In order to minimize the intense balancing activity impact in the Battery Management System, has been developed a cells grouping technique. All the cells that exhibit similar behavior in the operational field are aggregated. The optimization of the battery pack overall efficiency is based on neural networks SOM (Self Organization Map), in order to minimize the energy lose during the cells balance with a precise characterization, modeling and aggregation of the same. In this way, it is possible to maximize the useful energy in the battery pack at each vehicle cycle. The final aim of this works is the Battery Management System development with specially attention at the battery control strategies and their implementation. The Battery Management System (BMS) is an essential component within a multiple cell battery pack. It monitors the state of a battery, measuring and controlling key operational parameters, and thus ensuring safety. Lithium ion cells have high energy density so abuse of the cell can cause a thermal runaway leading to a cell fire and explosion. The single cells have safety devices and the battery has a safety circuit that monitors each cell and prevents over-charging and over-discharging. For this reason a AUTOSAR compliant BMS are developed. The AUTOSAR aims to establish a standard that will serve as a platform upon which future vehicle applications will be implemented and will also serve to minimize the current barriers between functional domains (vehicle centric versus passenger centric). In the BMS application software is present several software components, model based, with control strategies able to ensures the best lithium cells performance in completely safety. In details has been developed: a charge and discharge control for to maximize the battery life cycle, a cells balancing with a minimization of energy lose, an accurate cell impedance tracking, an State Of Charge (SOC) and State Of Health (SOH) estimator.File | Dimensione | Formato | |
---|---|---|---|
Tesi.Bellesi.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
5.17 MB
Formato
Adobe PDF
|
5.17 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.