The analysis methods of rigid retaining walls under seismic condition are analyzed and discussed. Referring to the case of a partially submerged backfill, for which different approaches are available in the literature to evaluate the seismic soil thrust, the sliding stability of a caisson quay wall is firstly analyzed. The presence of excess pore water pressure within the backfill is accounted for in the analysis by using the pore pressure ratio ru (assumed to be constant). Assuming the soil shear resistance angle (φ) and the soil-wall friction angle (δ) in ranges of practical interest, the results obtained by using the traditional pseudo-static method according to the recent Italian Building Code (D.M. 14/01/08) indicate that: − Design Approach 1 is always more conservative than Design Approach 2; a threshold value of the horizontal seismic coefficient exists above which it is impossible to obtain the width of caisson quay wall, regardless of the used approach; − for low values of ground acceleration on rigid subsoil, the design of the wall can be governed by the sliding verification in static conditions especially in presence of “variable actions”; − calculating the soil thrust by a “force-based approach” implies a more economical design when the excess pore water pressure is neglected, whereas it becomes more conservative than a “pressure-based approach” for increasing values of ru; − for a given peak ground acceleration the method recommended by Eurocode 8 to calculate the seismic soil active thrust leads to an over-conservative design. Since the Italian Building Code allows the use of performance-based methods, a parametric study is carried out by comparing the width of the structure obtained using the pseudo-static method to that obtained using the simplified displacement-based methods. The results demonstrate that: − the assumption of a fully submerged backfill is always on the safe side; the ratio between the base width obtained by the displacement method and the base width obtained by the pseudostatic method increases with the water level; − for a given seismic input and a given soil-wall friction angle at the base of the caisson, δ b, the displacement-based method can be more economical than the pseudo-static method, provided that the allowable displacement exceeds a limiting value of a few centimetres; − this limiting value of allowable displacement is found to be substantially independent of φ and δ, whereas it significantly decreases with increasing δ b. The second part of the thesis is focused on pseudo-dynamic analyses. In certain studies dealing with waterfront areas, the pseudo-dynamic analysis based on the Steedman e Zeng method has been incorrectly extended to submerged backfills as well: therefore a more rational pseudodynamic approach is developed for fully submerged soil, taking into account horizontal and vertical soil accelerations as well as amplification phenomena. The proposed solution leads to a pseudo-dynamic active soil thrust coefficient which distinguishes between restrained and free water condition within the backfill. The proposed analysis is perfectly consistent with the pseudo-static approach. Within a range of practical interest of soil and seismic input parameters, the acting point of the total seismic active thrust is found to be very close to a height of H/3 from the base of the wall. Since the seismic wave used by Steedman and Zeng does not represent a standing wave but only an incident upward travelling S wave which does not satisfy the boundary condition at the soil surface, a new pseudo-dynamic approach is proposed by considering the seismic response of a damped soil overlaying a rigid bedrock using the Kelvin-Voigt model. A new expression is derived for the horizontal soil acceleration which considers the amplification phenomena within the layer. In the hypothesis of dry backfill, the pseudo-dynamic active soil thrust is calculated. The results highlight that the seismic active soil thrust increases near the natural frequencies of soil layer, being more conservative than Steedman e Zeng approach; the soil thrust decreases at increasing the damping factor or the ratio between the height of the wall and the height of the layer.
La tesi affronta lo studio delle opere di sostegno rigide in condizioni sismiche. Nella prima parte sono dapprima analizzati e discussi i diversi metodi di analisi disponibili in letteratura. Considerando il caso di un riempimento parzialmente sommerso viene esaminato il dimensionamento di una particolare tipologia di opere di sostegno come le banchine a cassoni nell’ipotesi che la verifica geotecnica più gravosa per la struttura sia lo scorrimento alla base. Assumendo l’angolo di resistenza al taglio del terreno e l’angolo di attrito terreno-struttura variabili in intervalli di interesse pratico, l’applicazione del metodo pseudo-statico secondo la recente normativa italiana (D.M. 14/01/2008) indica che: − l’Approccio 1 suggerito dal D.M. 14/01/2008 è sempre più cautelativo dell’Approccio 2; esiste però un valore di soglia del coefficiente sismico orizzontale che rende impossibile il dimensionamento della struttura indipendentemente dall’approccio usato; − per bassi valori dell’accelerazione attesa su suolo rigido e soprattutto in presenza di forze variabili il dimensionamento in condizioni statiche può risultare più gravoso di quello in condizioni sismiche; − per bassi valori delle sovrappressioni interstiziali, considerate attraverso il coefficiente ru assunto positivo e costante con la profondità, l’approccio basato sul cuneo di Coulomb per il calcolo della spinta sismica del terreno risulta meno cautelativo dell’approccio basato sulle pressioni, ma diventa più conservativo per valori di ru superiori ad un valore di transizione; − per un assegnato valore dell’accelerazione di picco l’uso dei coefficienti sismici suggeriti dalla normativa europea (Eurocodice 8) porta a dimensionamenti ultra-conservativi. Poiché il D.M. 14/01/2008 consente l’impiego di approcci progettuali prestazionali, è stato condotto il dimensionamento della banchina a cassoni applicando un metodo degli spostamenti semplificato confrontando i risultati con il metodo pseudo-statico al variare di alcuni parametri progettuali. I risultati ottenuti sono che: − la condizione più gravosa per l’opera si ha in condizioni di riempimento completamente sommerso; all’aumentare del rapporto di sommersione aumenta il rapporto tra la larghezza minima della banchina ottenuta con il metodo degli spostamenti e quella ottenuta con il metodo pseudo-statico; − il metodo degli spostamenti può permettere un dimensionamento meno oneroso rispetto al metodo pseudo-statico, a patto che lo spostamento ammissibile per l’opera sia inferiore ad un valore limite stimato in pochi centimetri; − il valore di questo spostamento limite dipende significativamente dal valore dell’angolo di attrito tra struttura e terreno di base, mentre è praticamente indipendente dal valore dell’angolo di resistenza al taglio del riempimento e dell’angolo di attrito tra terreno di riempimento e opera di sostegno, variabili in intervalli di interesse di pratico. La seconda parte della tesi riguarda il calcolo della spinta sismica attiva del terreno utilizzando approcci di tipo pseudo-dinamico. Sulla base del metodo proposto da Steedman e Zeng, valido per terreni asciutti ma impropriamente usato anche in presenza di acqua, è stato sviluppato un approccio pseudo-dinamico per il calcolo della spinta sismica del terreno nel caso di riempimenti completamente sommersi considerando la propagazione delle onde P ed S nel riempimento e tenendo conto degli effetti di amplificazione del moto sismico. La soluzione proposta consente di definire un coefficiente di spinta attiva pseudo-dinamica che distingue tra le condizioni di acqua libera e vincolata nel terrapieno e nell’ipotesi di terreno rigido coincide perfettamente con la soluzione del metodo pseudo-statico. Il punto di applicazione della spinta sismica totale può essere considerato prossimo ad H/3 dalla base del muro. Considerando che l’accelerazione orizzontale del terreno proposta da Steedman e Zeng non soddisfa le condizioni al contorno in superficie, è stato sviluppato un nuovo metodo pseudodinamico per il calcolo della spinta del terreno considerando il riempimento a tergo dell’opera uno strato visco-elastico lineare (rappresentato con il modello di Kelvin-Voigt) poggiante su un substrato rigido. Nell’ipotesi di terreno asciutto, i risultati indicano che la spinta attiva pseudodinamica del terreno ha dei massimi relativi in corrispondenza delle frequenze naturali di vibrazione dello strato e può risultare sensibilmente più elevata di quella ottenuta con la teoria di Steedman e Zeng; la spinta sismica diminuisce all’aumentare dei fenomeni di smorzamento viscoso e del rapporto tra altezza del muro e altezza dello strato.
Contributi al dimensionamento delle opere di sostegno in condizioni sismiche / D'Alberto, Diego. - (2011 Feb 04).
Contributi al dimensionamento delle opere di sostegno in condizioni sismiche
D'Alberto, Diego
2011-02-04
Abstract
The analysis methods of rigid retaining walls under seismic condition are analyzed and discussed. Referring to the case of a partially submerged backfill, for which different approaches are available in the literature to evaluate the seismic soil thrust, the sliding stability of a caisson quay wall is firstly analyzed. The presence of excess pore water pressure within the backfill is accounted for in the analysis by using the pore pressure ratio ru (assumed to be constant). Assuming the soil shear resistance angle (φ) and the soil-wall friction angle (δ) in ranges of practical interest, the results obtained by using the traditional pseudo-static method according to the recent Italian Building Code (D.M. 14/01/08) indicate that: − Design Approach 1 is always more conservative than Design Approach 2; a threshold value of the horizontal seismic coefficient exists above which it is impossible to obtain the width of caisson quay wall, regardless of the used approach; − for low values of ground acceleration on rigid subsoil, the design of the wall can be governed by the sliding verification in static conditions especially in presence of “variable actions”; − calculating the soil thrust by a “force-based approach” implies a more economical design when the excess pore water pressure is neglected, whereas it becomes more conservative than a “pressure-based approach” for increasing values of ru; − for a given peak ground acceleration the method recommended by Eurocode 8 to calculate the seismic soil active thrust leads to an over-conservative design. Since the Italian Building Code allows the use of performance-based methods, a parametric study is carried out by comparing the width of the structure obtained using the pseudo-static method to that obtained using the simplified displacement-based methods. The results demonstrate that: − the assumption of a fully submerged backfill is always on the safe side; the ratio between the base width obtained by the displacement method and the base width obtained by the pseudostatic method increases with the water level; − for a given seismic input and a given soil-wall friction angle at the base of the caisson, δ b, the displacement-based method can be more economical than the pseudo-static method, provided that the allowable displacement exceeds a limiting value of a few centimetres; − this limiting value of allowable displacement is found to be substantially independent of φ and δ, whereas it significantly decreases with increasing δ b. The second part of the thesis is focused on pseudo-dynamic analyses. In certain studies dealing with waterfront areas, the pseudo-dynamic analysis based on the Steedman e Zeng method has been incorrectly extended to submerged backfills as well: therefore a more rational pseudodynamic approach is developed for fully submerged soil, taking into account horizontal and vertical soil accelerations as well as amplification phenomena. The proposed solution leads to a pseudo-dynamic active soil thrust coefficient which distinguishes between restrained and free water condition within the backfill. The proposed analysis is perfectly consistent with the pseudo-static approach. Within a range of practical interest of soil and seismic input parameters, the acting point of the total seismic active thrust is found to be very close to a height of H/3 from the base of the wall. Since the seismic wave used by Steedman and Zeng does not represent a standing wave but only an incident upward travelling S wave which does not satisfy the boundary condition at the soil surface, a new pseudo-dynamic approach is proposed by considering the seismic response of a damped soil overlaying a rigid bedrock using the Kelvin-Voigt model. A new expression is derived for the horizontal soil acceleration which considers the amplification phenomena within the layer. In the hypothesis of dry backfill, the pseudo-dynamic active soil thrust is calculated. The results highlight that the seismic active soil thrust increases near the natural frequencies of soil layer, being more conservative than Steedman e Zeng approach; the soil thrust decreases at increasing the damping factor or the ratio between the height of the wall and the height of the layer.File | Dimensione | Formato | |
---|---|---|---|
Tesi.Dalberto.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
2.97 MB
Formato
Adobe PDF
|
2.97 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.