The present Thesis rises from a research sponsored by Monier S.p.a. and by the Department of Architecture, Construction and Structures of Marche Polytechnic University. The aim of the project is an experimental and analytical evaluation of the thermal performance of roofs, which are designed according to the actual Italian norms and regulations for the energy efficiency in buildings. In particular, during the research, we tried to understand the consequences of the use of high levels of insulation in roofs, even under hot and temperate climatic conditions, and whether alternative passive cooling strategies could be also effective in reducing energy consumption and ensuring a better indoor comfort. At this aim, we followed a traditional research procedure, including experimental activities on a full-scale building and laboratory mock-ups and a parametric analysis with a mathematical model expressly implemented. Monitoring activity was carried out on a full-scale experimental building near Ancona, Italy, with 7 different types of roof. The roofs, all high-insulated according to Italian regulations, are differentiated by the kind of slab (pine wood or concrete), the presence or height of ventilation duct (0-3-6 cm), the kind of covering (clay tiles or copper), and the presence of a radiant barrier. External climatic conditions and thermal measurements in the envelope and inside the building were regularly collected since 2008, in order to evaluate the thermal performance of the roofs. In addition, laboratory experiments were conducted, to focus on some specific building technologies and better analyse monitoring results. Tests were performed for the evaluation of the air permeability of clay tiles covering and for the evaluation of the thermal performance of different types of reflective insulation materials. Experimental data were also used to obtain empirical or statistical correlations between thermal measurements in the building and external climatic conditions. Correlations were then employed for the implementation and validation of a model for the energy calculation of a ventilated roof under hot and temperate climatic conditions. With the model, based on the analogy with an electrical resistor–capacitor circuit, we conducted a parametric analysis on the thermal performance of roofs to extend experimental results, by varying some technological properties (the insulation thermal transmittance, the presence of a radiant barrier, the type of slab). By analyzing roofs made following the Italian regulations in terms of thermal transmittance and of periodic thermal transmittance, the main experimental and analytical results showed that the “overinsulation” flattens the differences among the systems, by raising very low heat fluxes incoming the building. At the same time it does not guarantee a good indoor comfort (because of the “box effect” created by the high insulation). The high thermal resistance also causes the overheating of the external layers of the roofs (insulation, air duct, covering). This phenomenon, called “thermal decoupling” between the interior and the upper layers of the roofs, may bring to durability problems for the materials. In spite of the low air speed recorded in roofs ducts, experimental results also confirmed that ventilation is an effective passive cooling strategy. However the air permeability through the joints of clay tiles coverings seems to be so effective itself, that the employment of higher ducts, according to the classical theory of ventilation, becomes useless. Also the use of a high thermal mass on slabs turns out to be an effective strategy, because of the reduction of the heat fluxes incoming the heavy slabs in summer (until 19% less), and because of the energy saving linked to the dynamical answer of the heavy slabs in winter. The combination of these strategies with a radiant barrier over the insulation leads to unimportant benefits. From the experimental results we also tried to define some performance-equivalent roof solutions, suitable for hot and temperate climatic contexts and related to traditionally-constructed buildings. The conclusions of the research hope for new Italian regulations for energy saving in buildings under hot and temperate climates, which should pay more attention to the performance of different solutions, even alternative to the use of the “overinsulation”.

La presente Tesi di Dottorato nasce nell’ambito di una ricerca cofinanziata dall’Azienda Monier SpA e dal Dipartimento di Architettura Costruzioni e Strutture dell’Università Politecnica delle Marche, con l’obiettivo di valutare, sperimentalmente e analiticamente, le prestazioni termiche di coperture, progettate secondo le recenti disposizioni normative italiane in materia di risparmio energetico degli edifici. In particolare, il lavoro ha cercato di comprendere quali fossero le conseguenze dell’impiego di sistemi di copertura caratterizzati da livelli di trasmittanza particolarmente performanti, anche in contesti climatici caldi e temperati, e quali strategie alternative di raffrescamento passivo in copertura potessero assicurare un contributo altresì efficace per il contenimento dei consumi energetici e la garanzia della qualità ambientale degli edifici. A tal scopo, si è seguito un iter classico di ricerca, comprendente delle attività sperimentali su modelli a scala reale e su prototipi in laboratorio, e delle attività di analisi parametrica su un modello analitico sviluppato ad hoc. Durante la fase sperimentale, si sono predisposti e condotti diversi monitoraggi su sette configurazioni di copertura di un edificio a scala reale costruito ad Agugliano (Ancona). Le diverse coperture, “iperisolate” secondo le attuali prescrizioni normative sull’involucro, si differenziano per tipologia di solaio (ligneo o in laterocemento), per presenza e altezza dell’intercapedine di ventilazione (0-3-6 cm), per tipologia di manto (rame o laterizio), per presenza di una barriera radiante all’estradosso dell’isolante. I rilievi, effettuati sia in fase invernale che in fase estiva, a edificio climatizzato o meno, nel corso degli anni dal 2008 al 2010, hanno permesso di ottenere grandezze termiche e cinematiche in stratigrafia, grandezze climatiche esterne e condizioni ambientali interne all’edificio. I dati sono stati interpretati al fine di valutare la prestazione dei diversi sistemi di copertura. Collateralmente ai monitoraggi sull’edificio, si sono inoltre svolte delle sperimentazioni in laboratorio, finalizzate all’approfondimento di alcune tecnologie specifiche, in vista di una più corretta interpretazione dei dati di monitoraggio: prove per la valutazione dell’entità della ventilazione per permeabilità del manto e prove per la valutazione delle prestazioni termiche di isolanti riflettenti. I risultati delle sperimentazioni sono inoltre stati utilizzati per ottenere correlazioni empiriche o statistiche tra grandezze termiche derivate e grandezze climatiche esterne, con cui implementare e validare un modello semi-empirico, basato sull’analogia con le reti resistive – capacitive elettriche, per il calcolo energetico di coperture ventilate nel nostro contesto climatico. Con il modello si sono quindi condotte analisi parametriche per indagare la prestazione termica di coperture al variare di tecnologie costruttive (trasmittanza termica dell’isolante, presenza o meno di barriera radiante, solaio leggero o massivo), e al fine dunque di estendere i risultati sperimentali già ottenuti. In caso di coperture per le quali si imponga il rispetto dei limiti normativi di trasmittanza termica periodica e stazionaria per la zona climatica D (la zona di Ancona), i principali risultati sperimentali ed analitici ottenuti dimostrano come l’”iperisolamento” tenda ad “appiattire” le differenze tra le varie soluzioni costruttive, determinando modesti flussi termici entranti all’interno dell’edifico, ma non sempre garantendo adeguate condizioni di confort ambientale interno (“effetto scatola”). Inoltre, l’elevata resistenza termica fa sì che gli strati del pacchetto superiore della copertura (superficie dell’isolante, intercapedine ventilata, manto) raggiungano temperature molto elevate per il fenomeno del “disaccoppiamento termico” dell’isolante, con conseguenti problemi di durabilità dei materiali e di prestazione dei componenti stessi. Nonostante le modeste velocità dell’aria rilevate nelle intercapedini sottomanto, si è confermato come la ventilazione, realizzata anche solo attraverso l’utilizzo di manti permeabili all’aria e dalle moderate proprietà radiative, sia una strategia assolutamente efficace per il raffrescamento passivo della copertura, tuttavia investire su elevate intercapedini, in accordo con la teoria classica di ventilazione, risulta poco rilevante. L'uso della massa termica nei solai si rivela una strategia molto performante, sia in termini di riduzione di energia entrante in fase estiva (fino al 19% in meno), sia per il risparmio energetico connesso alla sua risposta dinamica ai carichi termici interni in fase invernale. La combinazione di queste strategie con una barriera radiante sovrapposta all’isolante dà invece un beneficio trascurabile se le coperture sono già fortemente isolate. Dati questi risultati, si è tentato di definire delle soluzioni costruttive “equivalenti” in termini di prestazione termica, che siano adeguate al nostro contesto climatico e che sappiano anche rileggere elementi costruttivi della tradizione. La ricerca si conclude con una rivisitazione delle attuali prescrizioni normative in chiave maggiormente “prestazionale”, e meno “prescrittiva”, e suggerendo soluzioni costruttive alternative all’“iperisolamento” dell’involucro, nei climi più caldi e temperati del nostro paese.

La progettazione energetica delle coperture: valutazione sperimentale ed analitica di coperture "iperisolate" in clima caldo e temperato / Di Giuseppe, Elisa. - (2011 Jan 14).

La progettazione energetica delle coperture: valutazione sperimentale ed analitica di coperture "iperisolate" in clima caldo e temperato

Di Giuseppe, Elisa
2011-01-14

Abstract

The present Thesis rises from a research sponsored by Monier S.p.a. and by the Department of Architecture, Construction and Structures of Marche Polytechnic University. The aim of the project is an experimental and analytical evaluation of the thermal performance of roofs, which are designed according to the actual Italian norms and regulations for the energy efficiency in buildings. In particular, during the research, we tried to understand the consequences of the use of high levels of insulation in roofs, even under hot and temperate climatic conditions, and whether alternative passive cooling strategies could be also effective in reducing energy consumption and ensuring a better indoor comfort. At this aim, we followed a traditional research procedure, including experimental activities on a full-scale building and laboratory mock-ups and a parametric analysis with a mathematical model expressly implemented. Monitoring activity was carried out on a full-scale experimental building near Ancona, Italy, with 7 different types of roof. The roofs, all high-insulated according to Italian regulations, are differentiated by the kind of slab (pine wood or concrete), the presence or height of ventilation duct (0-3-6 cm), the kind of covering (clay tiles or copper), and the presence of a radiant barrier. External climatic conditions and thermal measurements in the envelope and inside the building were regularly collected since 2008, in order to evaluate the thermal performance of the roofs. In addition, laboratory experiments were conducted, to focus on some specific building technologies and better analyse monitoring results. Tests were performed for the evaluation of the air permeability of clay tiles covering and for the evaluation of the thermal performance of different types of reflective insulation materials. Experimental data were also used to obtain empirical or statistical correlations between thermal measurements in the building and external climatic conditions. Correlations were then employed for the implementation and validation of a model for the energy calculation of a ventilated roof under hot and temperate climatic conditions. With the model, based on the analogy with an electrical resistor–capacitor circuit, we conducted a parametric analysis on the thermal performance of roofs to extend experimental results, by varying some technological properties (the insulation thermal transmittance, the presence of a radiant barrier, the type of slab). By analyzing roofs made following the Italian regulations in terms of thermal transmittance and of periodic thermal transmittance, the main experimental and analytical results showed that the “overinsulation” flattens the differences among the systems, by raising very low heat fluxes incoming the building. At the same time it does not guarantee a good indoor comfort (because of the “box effect” created by the high insulation). The high thermal resistance also causes the overheating of the external layers of the roofs (insulation, air duct, covering). This phenomenon, called “thermal decoupling” between the interior and the upper layers of the roofs, may bring to durability problems for the materials. In spite of the low air speed recorded in roofs ducts, experimental results also confirmed that ventilation is an effective passive cooling strategy. However the air permeability through the joints of clay tiles coverings seems to be so effective itself, that the employment of higher ducts, according to the classical theory of ventilation, becomes useless. Also the use of a high thermal mass on slabs turns out to be an effective strategy, because of the reduction of the heat fluxes incoming the heavy slabs in summer (until 19% less), and because of the energy saving linked to the dynamical answer of the heavy slabs in winter. The combination of these strategies with a radiant barrier over the insulation leads to unimportant benefits. From the experimental results we also tried to define some performance-equivalent roof solutions, suitable for hot and temperate climatic contexts and related to traditionally-constructed buildings. The conclusions of the research hope for new Italian regulations for energy saving in buildings under hot and temperate climates, which should pay more attention to the performance of different solutions, even alternative to the use of the “overinsulation”.
14-gen-2011
La presente Tesi di Dottorato nasce nell’ambito di una ricerca cofinanziata dall’Azienda Monier SpA e dal Dipartimento di Architettura Costruzioni e Strutture dell’Università Politecnica delle Marche, con l’obiettivo di valutare, sperimentalmente e analiticamente, le prestazioni termiche di coperture, progettate secondo le recenti disposizioni normative italiane in materia di risparmio energetico degli edifici. In particolare, il lavoro ha cercato di comprendere quali fossero le conseguenze dell’impiego di sistemi di copertura caratterizzati da livelli di trasmittanza particolarmente performanti, anche in contesti climatici caldi e temperati, e quali strategie alternative di raffrescamento passivo in copertura potessero assicurare un contributo altresì efficace per il contenimento dei consumi energetici e la garanzia della qualità ambientale degli edifici. A tal scopo, si è seguito un iter classico di ricerca, comprendente delle attività sperimentali su modelli a scala reale e su prototipi in laboratorio, e delle attività di analisi parametrica su un modello analitico sviluppato ad hoc. Durante la fase sperimentale, si sono predisposti e condotti diversi monitoraggi su sette configurazioni di copertura di un edificio a scala reale costruito ad Agugliano (Ancona). Le diverse coperture, “iperisolate” secondo le attuali prescrizioni normative sull’involucro, si differenziano per tipologia di solaio (ligneo o in laterocemento), per presenza e altezza dell’intercapedine di ventilazione (0-3-6 cm), per tipologia di manto (rame o laterizio), per presenza di una barriera radiante all’estradosso dell’isolante. I rilievi, effettuati sia in fase invernale che in fase estiva, a edificio climatizzato o meno, nel corso degli anni dal 2008 al 2010, hanno permesso di ottenere grandezze termiche e cinematiche in stratigrafia, grandezze climatiche esterne e condizioni ambientali interne all’edificio. I dati sono stati interpretati al fine di valutare la prestazione dei diversi sistemi di copertura. Collateralmente ai monitoraggi sull’edificio, si sono inoltre svolte delle sperimentazioni in laboratorio, finalizzate all’approfondimento di alcune tecnologie specifiche, in vista di una più corretta interpretazione dei dati di monitoraggio: prove per la valutazione dell’entità della ventilazione per permeabilità del manto e prove per la valutazione delle prestazioni termiche di isolanti riflettenti. I risultati delle sperimentazioni sono inoltre stati utilizzati per ottenere correlazioni empiriche o statistiche tra grandezze termiche derivate e grandezze climatiche esterne, con cui implementare e validare un modello semi-empirico, basato sull’analogia con le reti resistive – capacitive elettriche, per il calcolo energetico di coperture ventilate nel nostro contesto climatico. Con il modello si sono quindi condotte analisi parametriche per indagare la prestazione termica di coperture al variare di tecnologie costruttive (trasmittanza termica dell’isolante, presenza o meno di barriera radiante, solaio leggero o massivo), e al fine dunque di estendere i risultati sperimentali già ottenuti. In caso di coperture per le quali si imponga il rispetto dei limiti normativi di trasmittanza termica periodica e stazionaria per la zona climatica D (la zona di Ancona), i principali risultati sperimentali ed analitici ottenuti dimostrano come l’”iperisolamento” tenda ad “appiattire” le differenze tra le varie soluzioni costruttive, determinando modesti flussi termici entranti all’interno dell’edifico, ma non sempre garantendo adeguate condizioni di confort ambientale interno (“effetto scatola”). Inoltre, l’elevata resistenza termica fa sì che gli strati del pacchetto superiore della copertura (superficie dell’isolante, intercapedine ventilata, manto) raggiungano temperature molto elevate per il fenomeno del “disaccoppiamento termico” dell’isolante, con conseguenti problemi di durabilità dei materiali e di prestazione dei componenti stessi. Nonostante le modeste velocità dell’aria rilevate nelle intercapedini sottomanto, si è confermato come la ventilazione, realizzata anche solo attraverso l’utilizzo di manti permeabili all’aria e dalle moderate proprietà radiative, sia una strategia assolutamente efficace per il raffrescamento passivo della copertura, tuttavia investire su elevate intercapedini, in accordo con la teoria classica di ventilazione, risulta poco rilevante. L'uso della massa termica nei solai si rivela una strategia molto performante, sia in termini di riduzione di energia entrante in fase estiva (fino al 19% in meno), sia per il risparmio energetico connesso alla sua risposta dinamica ai carichi termici interni in fase invernale. La combinazione di queste strategie con una barriera radiante sovrapposta all’isolante dà invece un beneficio trascurabile se le coperture sono già fortemente isolate. Dati questi risultati, si è tentato di definire delle soluzioni costruttive “equivalenti” in termini di prestazione termica, che siano adeguate al nostro contesto climatico e che sappiano anche rileggere elementi costruttivi della tradizione. La ricerca si conclude con una rivisitazione delle attuali prescrizioni normative in chiave maggiormente “prestazionale”, e meno “prescrittiva”, e suggerendo soluzioni costruttive alternative all’“iperisolamento” dell’involucro, nei climi più caldi e temperati del nostro paese.
File in questo prodotto:
File Dimensione Formato  
Tesi_Di_Giuseppe.pdf

embargo fino al 31/12/2030

Descrizione: Tesi_Di_Giuseppe.pdf
Tipologia: Tesi di dottorato
Licenza d'uso: Creative commons
Dimensione 15.32 MB
Formato Adobe PDF
15.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/241939
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact