The research activity has been con gured as an investigation on structural glass. Glass is a new material if placed in the field of structural materials, because until recently it was used mainly for glazing and/or curtain walls. Instead, in recent years, we have seen that the glass is increasingly used for structural parts, such as flooring, staircases, balustrades, canopies, roofing, etc. In all these cases, the glass has to behave as a building material for all purposes, such as concrete or steel. Looking at it from this point of view, it is evident the need and the utility of regulations in the calculation of structural glass. In this regard, we considered the standards present in European and Italian systems. In recent years, the need in Italy for comprehensive legislation on the structural glass (as already present in many European countries) is very urgent, without having to resort each time to the universe of UNI, very complete, but just as widespread. Thus, to elaborate a standard unified document, a voluntary committee has set up at the CNR for the drafting of these regulations, and here we joined in the "models" group. Our investigation, however, focused on the characterization of structural glass as widely as possible, looking from the point of view of design, testing of materials, mathematical models. The design has focused on research and development of a structural element, easy to produce and sell in different configurations and solutions. The choice was on the design of a truss made of glass and stainless steel. Key features of this element are: modularity, since the beam consists of a base module repeatable until a total length of 6.90 m, the possibility of curve configurations, since the elements of the basic module can rotate mutually, and the portability, since turning the elements, the module will "flatten out" and can be transported more easily. The beam has been studied in terms of static and dynamic conditions in various configurations and at the end of the design was merged in an Italian patent. Regarding the tests on structural glass, we conducted tests in both static and dynamic eld. In statics, we have performed simple compression tests, first without necessary equipment for displacement data and then adding the instrumentation. In this way we could analyze the failure mechanism of glass, noting that our samples of laminated glass (consisting of three layers of glass) do not undergo brittle failure, but in the stress-strain graph a kind of plastic landing appeared, due to presence of PVB. The dynamic tests have taken place with the use of accelerometers and manual hammering, and then by the use of a laser vibrometer. The main aim of these tests was to understand the behavior of the interlayer and its mechanical properties. Using different methods of dynamic identification, we obtained the modal parameters, such as the natural frequencies, the modal damping and the mode shapes. The tests involved three different typologies of samples: a monolithic glass, a laminated glass composed by two layers of glass and a laminated glass composed by three layers of glass. As expected, the monolithic glass behaves just like a beam in free vibration. The two-layer sample behaves at first modes as if the PVB will achieve a perfectly rigid connection between the layers of glass, thus making the behavior similar to that of a monolithic beam. The three-layer sample has some behavior anomalies, because its frequencies are lower than those of the two-layer sample, instead of increasing. We searched in literature some possible explanations for this phenomenon, arguing that the factor "temperature" is one that most a ects the behavior of PVB. The three-layer sample was the only one that undergo cycles of considerable temperature variations, and it is possible a behavior change due to temperature. Last exposed issue was the treatment of laminated glass from theoretical point of view. Using the method of asymptotic expansion, we obtained the natural frequencies of a multi-layer element composed by linear elastic materials with strong contrast in mechanical properties, such as glass and PVB. With the use of a small parameter, [epsilon], we described the limit behavior of the multi-layer, identifying its pulsations at low and medium frequencies. This was achieved using two different asymptotic expansions for the pulsation [omega]. In conclusion, we conducted an investigation into the structural glass as wide as possible, touching on various themes and trying to raise many issues to make the glass more and more similar to a building material for all purposes.

La ricerca svolta si è configurata come indagine sul vetro strutturale. Il vetro è un materiale nuovo nel campo dei materiali strutturali, in quanto fino a poco tempo fa veniva utilizzato solo in finestrature e/o facciate continue. Invece negli ultimi anni si è visto che il vetro è sempre più utilizzato per parti direttamente strutturali, quali pavimentazioni, scale, balaustre, pensiline, coperture, ecc. In questi casi il vetro deve comportarsi come un materiale da costruzione a tutti gli effetti, quale il calcestruzzo armato o l'acciaio. Guardandolo da questo punto di vista, si vede come siano necessarie delle normative nell'ambito del calcolo del vetro strutturale. A tale proposito, si sono prese in considerazione le normative presenti in campo europeo ed italiano. Negli ultimi anni infatti si è sentita l'esigenza anche in Italia di una normativa completa sul vetro strutturale (come già presente in molti stati europei), senza dover sempre ricorrere all'universo delle norme UNI, molto complete, ma altrettanto dispersive. Per elaborare quindi un documento unitario, si è istituita presso il CNR una commissione volontaria per la redazione di tali normative, in cui siamo entrati a far parte nell'ambito del gruppo "modelli". La nostra indagine comunque si è incentrata sulla caratterizzazione del vetro strutturale nel modo più ampio possibile, guardandolo dal punto di vista della progettazione, delle prove sul materiale, dei modelli matematici. La progettazione si è incentrata sulla ricerca e sviluppo di un elemento strutturale facilmente producibile e vendibile in diverse configurazioni e soluzioni. La scelta è caduta sulla progettazione di una trave reticolare in vetro ed acciaio inossidabile. Caratteristiche principali di quest'elemento sono: la modularità, poiché la trave è costituita da un modulo base ripetibile fino alla lunghezza complessiva di 6.90 m; la possibilità di ottenere configurazioni curvilinee, in quanto gli elementi del modulo base possono ruotare reciprocamente; la trasportabilità, poiché ruotando gli elementi il modulo può "appiattirsi" ed essere trasportato più agevolmente. La trave è stata studiata staticamente e dinamicamente in varie configurazioni possibili ed al termine si è provveduto al deposito di un brevetto italiano. Per quanto riguarda le prove sul materiale, abbiamo condotto prove sia in campo statico che in campo dinamico. In campo statico abbiamo svolto delle prove a compressione semplice, prima senza strumentazione necessaria per gli spostamenti poi aggiungendo la strumentazione stessa. In questo modo abbiamo potuto analizzare il meccanismo di rottura del vetro, notando che i campioni a nostra disposizione in vetro laminato composto da tre strati di vetro non subiscono una rottura fragile, bensì si forma nel grafico stress-strain una sorta di pianerottolo plastico dovuto alla presenza del PVB. Le prove di tipo dinamico si sono svolte sia con l'utilizzo di accelerometri e martello strumentato, sia con l'uso di un vibrometro laser. Scopo principale di tali test è stato la comprensione del comportamento dell'interstrato e delle sue caratteristiche meccaniche. Utilizzando diversi metodi di identificazione dinamica, abbiamo ricavato i parametri modali principali quali frequenze proprie, smorzamenti modali e forme modali. I test hanno riguardano tre diversi tipi di campioni: uno in vetro monolitico, uno in vetro laminato a due strati ed uno in vetro laminato a tre strati. Come ci aspettavamo, il campione in vetro monolitico si comporta esattamente come una trave in vibrazione libera, il campione a due strati si comporta ai primi modi come se il PVB realizzasse una connessione perfettamente rigida tra gli strati di vetro, rendendo quindi il comportamento ancora analogo a quello di una trave monolitica, mentre il campione a tre strati presenta alcune anomalie di comportamento, in quanto le frequenze proprie si abbassano rispetto a quelle del due strati invece che aumentare. Abbiamo cercato in letteratura alcune possibili spiegazioni di questo fenomeno, deducendo che il fattore "temperatura" è quello che maggiormente influisce sul comportamento del PVB e che, essendo stato il campione a tre strati l'unico a subire alcuni cicli di variazioni considerevoli di temperatura, sia possibile una sua variazione di comportamento dovuta alla temperatura. Ultimo aspetto esposto è stata la trattazione del vetro laminato in ambito teorico. Utilizzando il metodo di espansione asintotica, abbiamo ricavato le pulsazioni proprie di un multistrato composto da materiali a comportamento elastico lineare con forte contrasto delle proprietà meccaniche, quali il vetro ed il PVB. Con l'utilizzo di un parametro piccolo, ", abbiamo descritto il comportamento limite del multistrato, individuandone le pulsazioni alle basse ed alle medie frequenze. Ciò è stato possibile utilizzando due diverse espansioni asintotiche per la pulsazione [omega]. In conclusione, si è condotta un'indagine sul vetro strutturale in modo più ampio possibile, toccando diverse tematiche e cercando di sollevare molte problematiche per rendere il vetro sempre più simile ad un materiale da costruzione a tutti gli effetti.

Structural glass between design, tests and models / Consolini, Laura. - (2011 Jan 14).

Structural glass between design, tests and models

Consolini, Laura
2011-01-14

Abstract

The research activity has been con gured as an investigation on structural glass. Glass is a new material if placed in the field of structural materials, because until recently it was used mainly for glazing and/or curtain walls. Instead, in recent years, we have seen that the glass is increasingly used for structural parts, such as flooring, staircases, balustrades, canopies, roofing, etc. In all these cases, the glass has to behave as a building material for all purposes, such as concrete or steel. Looking at it from this point of view, it is evident the need and the utility of regulations in the calculation of structural glass. In this regard, we considered the standards present in European and Italian systems. In recent years, the need in Italy for comprehensive legislation on the structural glass (as already present in many European countries) is very urgent, without having to resort each time to the universe of UNI, very complete, but just as widespread. Thus, to elaborate a standard unified document, a voluntary committee has set up at the CNR for the drafting of these regulations, and here we joined in the "models" group. Our investigation, however, focused on the characterization of structural glass as widely as possible, looking from the point of view of design, testing of materials, mathematical models. The design has focused on research and development of a structural element, easy to produce and sell in different configurations and solutions. The choice was on the design of a truss made of glass and stainless steel. Key features of this element are: modularity, since the beam consists of a base module repeatable until a total length of 6.90 m, the possibility of curve configurations, since the elements of the basic module can rotate mutually, and the portability, since turning the elements, the module will "flatten out" and can be transported more easily. The beam has been studied in terms of static and dynamic conditions in various configurations and at the end of the design was merged in an Italian patent. Regarding the tests on structural glass, we conducted tests in both static and dynamic eld. In statics, we have performed simple compression tests, first without necessary equipment for displacement data and then adding the instrumentation. In this way we could analyze the failure mechanism of glass, noting that our samples of laminated glass (consisting of three layers of glass) do not undergo brittle failure, but in the stress-strain graph a kind of plastic landing appeared, due to presence of PVB. The dynamic tests have taken place with the use of accelerometers and manual hammering, and then by the use of a laser vibrometer. The main aim of these tests was to understand the behavior of the interlayer and its mechanical properties. Using different methods of dynamic identification, we obtained the modal parameters, such as the natural frequencies, the modal damping and the mode shapes. The tests involved three different typologies of samples: a monolithic glass, a laminated glass composed by two layers of glass and a laminated glass composed by three layers of glass. As expected, the monolithic glass behaves just like a beam in free vibration. The two-layer sample behaves at first modes as if the PVB will achieve a perfectly rigid connection between the layers of glass, thus making the behavior similar to that of a monolithic beam. The three-layer sample has some behavior anomalies, because its frequencies are lower than those of the two-layer sample, instead of increasing. We searched in literature some possible explanations for this phenomenon, arguing that the factor "temperature" is one that most a ects the behavior of PVB. The three-layer sample was the only one that undergo cycles of considerable temperature variations, and it is possible a behavior change due to temperature. Last exposed issue was the treatment of laminated glass from theoretical point of view. Using the method of asymptotic expansion, we obtained the natural frequencies of a multi-layer element composed by linear elastic materials with strong contrast in mechanical properties, such as glass and PVB. With the use of a small parameter, [epsilon], we described the limit behavior of the multi-layer, identifying its pulsations at low and medium frequencies. This was achieved using two different asymptotic expansions for the pulsation [omega]. In conclusion, we conducted an investigation into the structural glass as wide as possible, touching on various themes and trying to raise many issues to make the glass more and more similar to a building material for all purposes.
14-gen-2011
La ricerca svolta si è configurata come indagine sul vetro strutturale. Il vetro è un materiale nuovo nel campo dei materiali strutturali, in quanto fino a poco tempo fa veniva utilizzato solo in finestrature e/o facciate continue. Invece negli ultimi anni si è visto che il vetro è sempre più utilizzato per parti direttamente strutturali, quali pavimentazioni, scale, balaustre, pensiline, coperture, ecc. In questi casi il vetro deve comportarsi come un materiale da costruzione a tutti gli effetti, quale il calcestruzzo armato o l'acciaio. Guardandolo da questo punto di vista, si vede come siano necessarie delle normative nell'ambito del calcolo del vetro strutturale. A tale proposito, si sono prese in considerazione le normative presenti in campo europeo ed italiano. Negli ultimi anni infatti si è sentita l'esigenza anche in Italia di una normativa completa sul vetro strutturale (come già presente in molti stati europei), senza dover sempre ricorrere all'universo delle norme UNI, molto complete, ma altrettanto dispersive. Per elaborare quindi un documento unitario, si è istituita presso il CNR una commissione volontaria per la redazione di tali normative, in cui siamo entrati a far parte nell'ambito del gruppo "modelli". La nostra indagine comunque si è incentrata sulla caratterizzazione del vetro strutturale nel modo più ampio possibile, guardandolo dal punto di vista della progettazione, delle prove sul materiale, dei modelli matematici. La progettazione si è incentrata sulla ricerca e sviluppo di un elemento strutturale facilmente producibile e vendibile in diverse configurazioni e soluzioni. La scelta è caduta sulla progettazione di una trave reticolare in vetro ed acciaio inossidabile. Caratteristiche principali di quest'elemento sono: la modularità, poiché la trave è costituita da un modulo base ripetibile fino alla lunghezza complessiva di 6.90 m; la possibilità di ottenere configurazioni curvilinee, in quanto gli elementi del modulo base possono ruotare reciprocamente; la trasportabilità, poiché ruotando gli elementi il modulo può "appiattirsi" ed essere trasportato più agevolmente. La trave è stata studiata staticamente e dinamicamente in varie configurazioni possibili ed al termine si è provveduto al deposito di un brevetto italiano. Per quanto riguarda le prove sul materiale, abbiamo condotto prove sia in campo statico che in campo dinamico. In campo statico abbiamo svolto delle prove a compressione semplice, prima senza strumentazione necessaria per gli spostamenti poi aggiungendo la strumentazione stessa. In questo modo abbiamo potuto analizzare il meccanismo di rottura del vetro, notando che i campioni a nostra disposizione in vetro laminato composto da tre strati di vetro non subiscono una rottura fragile, bensì si forma nel grafico stress-strain una sorta di pianerottolo plastico dovuto alla presenza del PVB. Le prove di tipo dinamico si sono svolte sia con l'utilizzo di accelerometri e martello strumentato, sia con l'uso di un vibrometro laser. Scopo principale di tali test è stato la comprensione del comportamento dell'interstrato e delle sue caratteristiche meccaniche. Utilizzando diversi metodi di identificazione dinamica, abbiamo ricavato i parametri modali principali quali frequenze proprie, smorzamenti modali e forme modali. I test hanno riguardano tre diversi tipi di campioni: uno in vetro monolitico, uno in vetro laminato a due strati ed uno in vetro laminato a tre strati. Come ci aspettavamo, il campione in vetro monolitico si comporta esattamente come una trave in vibrazione libera, il campione a due strati si comporta ai primi modi come se il PVB realizzasse una connessione perfettamente rigida tra gli strati di vetro, rendendo quindi il comportamento ancora analogo a quello di una trave monolitica, mentre il campione a tre strati presenta alcune anomalie di comportamento, in quanto le frequenze proprie si abbassano rispetto a quelle del due strati invece che aumentare. Abbiamo cercato in letteratura alcune possibili spiegazioni di questo fenomeno, deducendo che il fattore "temperatura" è quello che maggiormente influisce sul comportamento del PVB e che, essendo stato il campione a tre strati l'unico a subire alcuni cicli di variazioni considerevoli di temperatura, sia possibile una sua variazione di comportamento dovuta alla temperatura. Ultimo aspetto esposto è stata la trattazione del vetro laminato in ambito teorico. Utilizzando il metodo di espansione asintotica, abbiamo ricavato le pulsazioni proprie di un multistrato composto da materiali a comportamento elastico lineare con forte contrasto delle proprietà meccaniche, quali il vetro ed il PVB. Con l'utilizzo di un parametro piccolo, ", abbiamo descritto il comportamento limite del multistrato, individuandone le pulsazioni alle basse ed alle medie frequenze. Ciò è stato possibile utilizzando due diverse espansioni asintotiche per la pulsazione [omega]. In conclusione, si è condotta un'indagine sul vetro strutturale in modo più ampio possibile, toccando diverse tematiche e cercando di sollevare molte problematiche per rendere il vetro sempre più simile ad un materiale da costruzione a tutti gli effetti.
Structural glass
Dynamic analysis
Asyhptotic expansion
File in questo prodotto:
File Dimensione Formato  
Tesi.Consolini.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato
Licenza d'uso: Non specificato
Dimensione 17.34 MB
Formato Adobe PDF
17.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/241923
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact