Feeding is a motivated behavior essential to survival, growth and reproduction of each organism. The physiological control of appetite and satiety in animals is regulated by a complex system of central and peripheral signals, involving a balance of neurotransmitters and neuropeptides that interact reciprocally to stimulate or inhibit feeding behavior. Mechanisms regulating feeding processes allow to the maintenance of energy metabolism, reached through a meticulously interconnected circuitry between central nervous system, particularly hypothalamic arcuate nuclei, and peripheral organs (gastro-intestinal tract, adipose tissue, liver). Furthermore, the physiological mechanisms that control energy balance are reciprocally linked to those that control reproduction, it is difficult, in fact, to understand the physiology of energy balance without understanding its link to reproductive success. In addition to the various controls mentioned above, the mechanisms that tend to maintain energy intake (food intake) and energy expenditure in balance is highly dependent on environmental factors. Among different environmental synchronizers, the alternation of light and dark (circadian rhythm) is probably the main factor controlling animal behavior, and melatonin is the hormonal mediator of these rhythms. It is well known that a multitude of factors can influence this precise mechanism. Genetic, nutritional and environmental factors are known to impact hunger and satiety as well as basal metabolic rate and lipid/carbohydrate metabolism. In particular, endocrine disrupters are known as molecules that can interfere with endocrine signaling miming sex hormones and endogenous steroids. The scientific community is increasingly convinced that the augment of eating disorders and disease in aspects of reproductive endocrinology and health is due to xenobiotic chemicals exposure. Alongside studies obtained on mammals, a growing number of researches on appetite control are focusing now on lower vertebrates, especially fish. This is due, in one hand, to their now recognized value as experimental model for this kind of studies. Fish, such as the zebrafish Danio rerio, are useful tools because, in a small scale, they allow to understand the intricate mechanism controlling food intake. In the other hand, considering the increasing importance of aquaculture activities in the last decades, most of the studies aim to the understanding of appetite regulation to improve productivity and quality in fish farm. The present PhD thesis focuses on mechanisms regulating food intake and energy metabolism in fish, in particular, using two different species (Danio rerio and Sparus aurata) this work is aimed at the understanding of neuroanatomical circuits involved on appetite control and at the highlighting of possible relationships between these mechanisms and external cues, with particular attention to photoperiod and endocrine disrupters. In the first part of the thesis, using zebrafish as experimental model, it was assessed the role of melatonin, through 10 days via water administration (doses 100nM and 1 micron), in regulating appetite and metabolism at central (brain) and peripheral level (liver, gastrointestinal tract, gonad and muscle). The main signals involved in appetite regulation (NPY, LPT, CB1, MC4R, Ghrelin) growth (IGF-1), lipid metabolism (PPARs, SREBP) and reproduction (LPT, Ghrelin, Cox2a) were analyzed for the first time all together by Real Time PCR. Western blot technique was used to analyze CB1 protein; FTIR for the evaluation of metabolic resources distribution (lipids, carbohydrates and proteins). Finally, fecundity, in the gonads, was evaluated by counting ovulate eggs. The results here obtained showed a clear role of melatonin in the pathways that regulate appetite, metabolism and reproduction. Melatonin significantly reduces food intake and the reduction is in agreement with the changes observed at molecular level. A significant increase in genes codifying for molecules involved in feeding inhibition and a significant reduction in the major orexigenic signals including ghrelin, NPY and CB1 are here showed. In the liver and intestine melatonin inhibited the signals that stimulate appetite, lipid metabolism and growth. In the muscle it was observed a decrease in lipid component. In addition, analyses on the melatonin role on reproductive pathways showed a clear involvement of this hormone on fecundity, in terms of eggs produced and molecules analyzed. Taken together these data, demonstrate the key role played by melatonin in the regulation of the energy balance, considering its interaction with all the molecules analyzed. In particular, this hormone appears to regulate energy consumption and acquisition on the basis of the metabolic resources available, thereby promoting reproduction and inhibiting feeding. Once highlighted processes regulating food intake and homeostasis in zebrafish, we shifted to the second experimental model the seabream Sparus aurata. Despite the great importance that this species is in aquaculture, no studies on the mechanisms that regulate appetite had never been done before. This species was chosen to analyze the role of the endocannabinoid system in appetite regulation at central (brain) and peripheral (liver) and to verify any relationship of this system with the powerful enhancer of appetite: NPY. The effect of different doses of the endocannabinoid anandamide (AEA) (0,1; 1; 10 µM), administered via water, was evaluated after different exposure times (30, 60 and 120’) at both physiological and molecular levels. Moreover, in order to assess the direct effect of AEA, AM251 (AEA antagonist) was administered 30’ before AEA. By Real-time PCR CB1 and NPY were analyzed in the brain, while by Western blot, CB1 protein was analyzed in brain and liver. The results obtained showed that the endocannabinoid system plays a key role in regulating appetite. At the physiological level in fact, food intake increased significantly, this result was confirmed at molecular level by the increase of NPY and CB1in gene expression. Moreover, the effect of the AEA was specific and direct, in fact AM251 reduced all the effects induced by AEA. Data obtained demonstrated for the first time in sea bream, a strong connection between CB1 and NPY in appetite regulation. In the last part of thesis, it was evaluated the effect of endocrine disrupters on appetite and energy balance regulation. Adult zebrafish were exposed to 0.02, 0.2 and 2 mg / L dietylexilphthalate (DEHP) and to assess the estrogen effect of the compound, ethinyl estradiol was also administered. Signals involved in appetite regulation (ORX, LPT, CB1) were analyzed in the brain while in the liver key signals of lipid metabolism (CB1, SREBP and PPARα) were evaluated. The results here shown demonstrated that DEHP is able to deeply affect all signals of appetite control and fat metabolism axes. Physiologically, a significant decrease in food intake is observable, confirmed at the central level, by the reduction of gene expression of orexigenic factors and up regulation of anorexigenic ones. In the liver, there is a stimulation of genes involved in lipid metabolism. Moreover, the impressive response of all the signals analyzed to DEHP lowest dose indicates that brain and liver are very sensitive target organs for DEHP action. The findings here reported not only provide to the current scientific literature an important contribution in the understanding of appetite control mechanism but could be interesting tools in widespread diseases and disorders linked to appetite and metabolism imbalances. Moreover, these data, although preliminary, help to expand knowledge about the mechanisms that regulate food intake in one of the most important species in European aquaculture.
L’appetito è un comportamento motivato essenziale alla sopravvivenza, crescita e riproduzione di ciascun organismo. Il controllo fisiologico dell’appetito e del senso di sazietà negli animali è regolato da un complesso sistema di segnali centrali e periferici che coinvolgono una serie di neurotrasmettitori e neuropeptidi che interagendo reciprocamente stimolano o inibiscono il comportamento alimentare. I meccanismi che stanno alla base di tale comportamento consentono di mantenere costante l’energia metabolica attraverso un circuito finemente regolato che si instaura tra sistema centrale, in particolare i nuclei arcuati dell’ipotalamo e organi periferici (tratto gastro-intestinale, tessuto adiposo, fegato..). Inoltre, considerando che il mantenimento dell’energy balance si ottiene dall’equilibrio tra energia acquisita (food intake) e consumata, risulta chiaro che la riproduzione, un processo ad elevato consumo energetico, riveste un ruolo chiave nei meccanismi fisiologici che regolano il bilancio dell’energia. E’ impossibile infatti, considerare tali meccanismi svincolati l’uno dall’altro. Tra i fattori esterni in grado di regolare l’energy balance, la luce è sicuramente il principale sincronizzatore del comportamento animale e la melatonina è il mediatore ormonale dei ritmi circadiani/circannuali secondo cui gli animali espletano le loro funzioni. Fattori invece che possono interagire negativamente su tale delicato equilibrio sono i distruttori endocrini, sostanze estrogeno-simili in grado di mimare l’azione di ormoni endogeni. Recenti ricerche affermano che l’uomo è sempre più esposto a tali inquinanti che si trovano ampiamente diffusi in molti manufatti industriali con cui veniamo a contatto giornalmente al punto che la comunità scientifica è sempre più convinta che disordini e malattie di natura endocrinologica siano proprio da imputare a tali esposizioni. La maggior parte delle conoscenze disponibili, com’è ovvio, proviene da studi su mammifero tuttavia negli ultimi anni un crescente numero di ricerche in tal senso si sta incentrando sui bassi vertebrati, in particolare sui pesci. Questo perché modelli sperimentali, come lo zebrafish Danio rerio, consentono di studiare su scala ridotta meccanismi intricati e complessi come quelli che regolano food intake ed energy balance, inoltre considerando la crescente importanza del settore dell’ acquacoltura, molti di tali studi sono proprio finalizzati ad aumentare la produttività e qualità degli allevamenti ittici. Questa tesi si è proposta di investigare i meccanismi che regolano il food intake e il metabolismo energetico nei pesci, in particolare, utilizzando due diverse specie (Danio rerio e Sparus aurata) tale studio ha lo scopo di comprendere di circuiti neuro anatomici coinvolti nel controllo dell’appetito e di mettere in luce possibili relazioni che intercorrono tra tali meccanismi e fattori esterni quali fotoperiodo e distruttori endocrini. Nella prima parte della tesi, utilizzando zebrafish come modello sperimentale, si è valutato, tramite somministrazione in vasca per 10gg, il ruolo della melatonina (dosi 100nM e 1µM) nella regolazione dell’appetito e del metabolismo a livello centrale (cervello) e periferico (fegato, tratto gastrointestinale, gonade e muscolo). Sono stati analizzati, per la prima volta tutti insieme, i principali segnali coinvolti nella regolazione dell’appetito (NPY, LPT, CB1, MC4R, Ghrelin) della crescita (IGF-1), del metabolismo lipidico (PPARs) e della riproduzione (LPT, Ghrelin, Cox2a) tramite PCR Real Time. In Western Blot è stata analizzata la proteina CB1, tramite FTIR è stata valutata la ripartizione delle risorse metaboliche (lipidi carboidrati e proteine), per quanto riguarda la gonade è stato calcolato il numero di uova ovulate per ciascun individuo. I risultati ottenuti hanno evidenziato un chiaro ruolo della melatonina nei pathways che regolano appetito, riproduzione e metabolismo. In particolare l’ormone, a livello fisiologico ha diminuito l’appetito, a livello molecolare ha stimolato positivamente i segnali anoressigenici mentre inibiti gli oressigenici nel cervello. Nel fegato e nell’intestino sono stati inibiti i segnali che stimolano l’appetito, il metabolismo lipidico e la crescita. Nel muscolo si è osservato invece una diminuzione della componente lipidica. A livello della gonade, fisiologicamente, è stato evidenziato un significativo aumento delle uova ovulate, dato confermato dall’aumento di espressione genica di Cox2a e LPT. Tali dati, nel loro insieme, dimostrano il ruolo chiave rivestito dalla melatonina nella regolazione dell’energy balance, andando ad interagire con tutte le molecole analizzate. In particolare tale ormone sembra regolare consumo e acquisizione di energia sulla base delle risorse metaboliche a disposizione, promuovendo quindi la riproduzione e inibendo l’alimentazione. Volendo, poi, analizzare pathways del food inatke anche in modello sperimentale marino siamo passati all’orata. Nonostante la grande importanza che questa specie riveste in acquacoltura, nessuno studio sui meccanismi che regolano l’appetito era stato mai effettuato prima. In questa specie è stato scelto di analizzare il ruolo del sistema endocannabinoide nella regolazione dell’appetito, a livello centrale (cervello) e periferico (fegato) ed eventuali relazioni con il neuropeptide oressigenico per eccellenza: NPY. Giovanili di orata sono state sottoposti, via acqua, a tre concentrazioni di anandamide (AEA, cannabinoide endogeno) (0,1; 1 e 10µM) per tre tempi differenti (30,60,120’). In seguito è stato utilizzato AM251 (antagonista dell’endocannabinoide) (0,1 e 1 µM) somministrato 30’ prima dell’AEA per valutare l’effetto dell’AEA (diretto o meno). Tramite Real time PCR sono stati analizzati CB1 ed NPY nel cervello, mentre tramite Western Blot CB1 è stato analizzato in cervello e fegato. I risultati acquisiti hanno evidenziato come il sistema endocannabinoide rivesta un ruolo chiave nella regolazione dell’appetito. A livello fisiologico, infatti, il food intake ha subito un forte incremento, che è stato confermato a livello molecolare sia nel cervello che nel fegato (aumento dell’espressione genica di Cb1 ed NPY). Inoltre l’effetto dell’AEA è stato specifico e diretto, poiché la somministrazione dell’antagonista ha riportato tutti valori analizzati pari al controllo, annullando l’effetto dell’AEA. Dai dati ottenuti è stata dimostrata, per la prima in orata, volta la forte connessione CB1-NPY nella regolazione dell’appetito. Nell’ultima parte della tesi, è stato valutato l’effetto che distruttori endocrini provocano al sistema che regola appetito e bilancio energetico. Adulti di zebrafish sono stati sottoposti a 0,02; 0,2 e 2 mg/L di dietylexilphthalate (DEHP) e per verificarne gli effetti estrogenici è stato somministrato etinil estradiolo. Tramite Real time PCR sono stati analizzati segnali coinvolti nella regolazione dell’appetito (ORX, LPT, CB1) nel cervello, mentre nel fegato sono stati valutati segnali chiave del metabolismo lipidico (CB1, SREBP e PPARα). I risultati ottenuti hanno dimostrato come questo tipo di composti siano in grado di modificare profondamente e a tutti i livelli gli assi che controllano appetito e metabolismo lipidico. Fisiologicamente si osserva una diminuzione del food intake, confermata, a livello centrale, dalla riduzione dell’espressione genica degli appetito stimolanti e up-regolazione di LPT. Nel fegato invece si osserva una stimolazione dei geni coinvolti nel metabolismo lipidico. Gli effetti più forti di tali modulazioni si sono osservati alle dosi più basse di DEHP, tale dato pone l’accento sull’importanza delle dosi basse nella contaminazione ambientale. Nella loro totalità, i risultai ottenuti in questa tesi di dottorato forniscono un’importante contributo alla letteratura scientifica nella comprensione del controllo dell’appetito e, più in generale, ne evidenziano le relazioni con l’ambiente esterno, ponendo l’accento sui rapporti tra bilancio energetico e metabolismo. Inoltre, i dati ottenuti su orata, sebbene preliminari, chiariscono ed ampliano la conoscenza dei meccanismi alla base del food intake in una delle specie più importanti per l’acquacultura europea.
Appetite control: study of pathways involved in food intake and metabolism regulation in teleost fish / Piccinetti, Chiara Carla. - (2011 Feb 17).
Appetite control: study of pathways involved in food intake and metabolism regulation in teleost fish
Piccinetti, Chiara Carla
2011-02-17
Abstract
Feeding is a motivated behavior essential to survival, growth and reproduction of each organism. The physiological control of appetite and satiety in animals is regulated by a complex system of central and peripheral signals, involving a balance of neurotransmitters and neuropeptides that interact reciprocally to stimulate or inhibit feeding behavior. Mechanisms regulating feeding processes allow to the maintenance of energy metabolism, reached through a meticulously interconnected circuitry between central nervous system, particularly hypothalamic arcuate nuclei, and peripheral organs (gastro-intestinal tract, adipose tissue, liver). Furthermore, the physiological mechanisms that control energy balance are reciprocally linked to those that control reproduction, it is difficult, in fact, to understand the physiology of energy balance without understanding its link to reproductive success. In addition to the various controls mentioned above, the mechanisms that tend to maintain energy intake (food intake) and energy expenditure in balance is highly dependent on environmental factors. Among different environmental synchronizers, the alternation of light and dark (circadian rhythm) is probably the main factor controlling animal behavior, and melatonin is the hormonal mediator of these rhythms. It is well known that a multitude of factors can influence this precise mechanism. Genetic, nutritional and environmental factors are known to impact hunger and satiety as well as basal metabolic rate and lipid/carbohydrate metabolism. In particular, endocrine disrupters are known as molecules that can interfere with endocrine signaling miming sex hormones and endogenous steroids. The scientific community is increasingly convinced that the augment of eating disorders and disease in aspects of reproductive endocrinology and health is due to xenobiotic chemicals exposure. Alongside studies obtained on mammals, a growing number of researches on appetite control are focusing now on lower vertebrates, especially fish. This is due, in one hand, to their now recognized value as experimental model for this kind of studies. Fish, such as the zebrafish Danio rerio, are useful tools because, in a small scale, they allow to understand the intricate mechanism controlling food intake. In the other hand, considering the increasing importance of aquaculture activities in the last decades, most of the studies aim to the understanding of appetite regulation to improve productivity and quality in fish farm. The present PhD thesis focuses on mechanisms regulating food intake and energy metabolism in fish, in particular, using two different species (Danio rerio and Sparus aurata) this work is aimed at the understanding of neuroanatomical circuits involved on appetite control and at the highlighting of possible relationships between these mechanisms and external cues, with particular attention to photoperiod and endocrine disrupters. In the first part of the thesis, using zebrafish as experimental model, it was assessed the role of melatonin, through 10 days via water administration (doses 100nM and 1 micron), in regulating appetite and metabolism at central (brain) and peripheral level (liver, gastrointestinal tract, gonad and muscle). The main signals involved in appetite regulation (NPY, LPT, CB1, MC4R, Ghrelin) growth (IGF-1), lipid metabolism (PPARs, SREBP) and reproduction (LPT, Ghrelin, Cox2a) were analyzed for the first time all together by Real Time PCR. Western blot technique was used to analyze CB1 protein; FTIR for the evaluation of metabolic resources distribution (lipids, carbohydrates and proteins). Finally, fecundity, in the gonads, was evaluated by counting ovulate eggs. The results here obtained showed a clear role of melatonin in the pathways that regulate appetite, metabolism and reproduction. Melatonin significantly reduces food intake and the reduction is in agreement with the changes observed at molecular level. A significant increase in genes codifying for molecules involved in feeding inhibition and a significant reduction in the major orexigenic signals including ghrelin, NPY and CB1 are here showed. In the liver and intestine melatonin inhibited the signals that stimulate appetite, lipid metabolism and growth. In the muscle it was observed a decrease in lipid component. In addition, analyses on the melatonin role on reproductive pathways showed a clear involvement of this hormone on fecundity, in terms of eggs produced and molecules analyzed. Taken together these data, demonstrate the key role played by melatonin in the regulation of the energy balance, considering its interaction with all the molecules analyzed. In particular, this hormone appears to regulate energy consumption and acquisition on the basis of the metabolic resources available, thereby promoting reproduction and inhibiting feeding. Once highlighted processes regulating food intake and homeostasis in zebrafish, we shifted to the second experimental model the seabream Sparus aurata. Despite the great importance that this species is in aquaculture, no studies on the mechanisms that regulate appetite had never been done before. This species was chosen to analyze the role of the endocannabinoid system in appetite regulation at central (brain) and peripheral (liver) and to verify any relationship of this system with the powerful enhancer of appetite: NPY. The effect of different doses of the endocannabinoid anandamide (AEA) (0,1; 1; 10 µM), administered via water, was evaluated after different exposure times (30, 60 and 120’) at both physiological and molecular levels. Moreover, in order to assess the direct effect of AEA, AM251 (AEA antagonist) was administered 30’ before AEA. By Real-time PCR CB1 and NPY were analyzed in the brain, while by Western blot, CB1 protein was analyzed in brain and liver. The results obtained showed that the endocannabinoid system plays a key role in regulating appetite. At the physiological level in fact, food intake increased significantly, this result was confirmed at molecular level by the increase of NPY and CB1in gene expression. Moreover, the effect of the AEA was specific and direct, in fact AM251 reduced all the effects induced by AEA. Data obtained demonstrated for the first time in sea bream, a strong connection between CB1 and NPY in appetite regulation. In the last part of thesis, it was evaluated the effect of endocrine disrupters on appetite and energy balance regulation. Adult zebrafish were exposed to 0.02, 0.2 and 2 mg / L dietylexilphthalate (DEHP) and to assess the estrogen effect of the compound, ethinyl estradiol was also administered. Signals involved in appetite regulation (ORX, LPT, CB1) were analyzed in the brain while in the liver key signals of lipid metabolism (CB1, SREBP and PPARα) were evaluated. The results here shown demonstrated that DEHP is able to deeply affect all signals of appetite control and fat metabolism axes. Physiologically, a significant decrease in food intake is observable, confirmed at the central level, by the reduction of gene expression of orexigenic factors and up regulation of anorexigenic ones. In the liver, there is a stimulation of genes involved in lipid metabolism. Moreover, the impressive response of all the signals analyzed to DEHP lowest dose indicates that brain and liver are very sensitive target organs for DEHP action. The findings here reported not only provide to the current scientific literature an important contribution in the understanding of appetite control mechanism but could be interesting tools in widespread diseases and disorders linked to appetite and metabolism imbalances. Moreover, these data, although preliminary, help to expand knowledge about the mechanisms that regulate food intake in one of the most important species in European aquaculture.File | Dimensione | Formato | |
---|---|---|---|
Tesi.Piccinetti.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato
Licenza d'uso:
Non specificato
Dimensione
5.85 MB
Formato
Adobe PDF
|
5.85 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.