Transcriptomic studies have revealed that the brains of sleeping and awake animals differ significantly at the molecular level, with hundreds of brain transcripts changing their expression across behavioral states. However, it was unclear how sleep affects specific cells types, such as oligodendrocytes, which make myelin in the healthy brain and in response to injury. In this review, I summarize the recent findings showing that several genes expressed at higher levels during sleep are involved in the synthesis/maintenance of all membranes and of myelin in particular. In addition, I will discuss the effect of sleep and wake on oligodendrocyte precursor cells (OPCs), providing a working hypothesis on the function of REM sleep and acetylcholine in OPC proliferation.
Sleep and oligodendrocyte functions / Bellesi, Michele. - In: CURRENT SLEEP MEDICINE REPORTS. - ISSN 2198-6401. - 1:1(2015), pp. 20-26-26. [10.1007/s40675-014-0008-2]
Sleep and oligodendrocyte functions
BELLESI, MICHELE
2015-01-01
Abstract
Transcriptomic studies have revealed that the brains of sleeping and awake animals differ significantly at the molecular level, with hundreds of brain transcripts changing their expression across behavioral states. However, it was unclear how sleep affects specific cells types, such as oligodendrocytes, which make myelin in the healthy brain and in response to injury. In this review, I summarize the recent findings showing that several genes expressed at higher levels during sleep are involved in the synthesis/maintenance of all membranes and of myelin in particular. In addition, I will discuss the effect of sleep and wake on oligodendrocyte precursor cells (OPCs), providing a working hypothesis on the function of REM sleep and acetylcholine in OPC proliferation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.