The effect of the deposition temperature (Tdep) on the crystallographic orientation of pulsed laser-deposited FeCo/MgO(100) thin film was determined by means of X-ray reflectivity and high resolution trasmission electron microscopy analysis and was correlated with the magnetic anisotropy properties measured by angle dependent hysteresis loops. Highly textured films with a bcc structure and very smooth surface were obtained even at room temperature, the film being [100] and [110] oriented, at Tdep = 25 °C and 150 °C, respectively. The cubic symmetry is reflected in the angular dependence of remanent magnetization, showing a 4-fold character, whose in-plane distribution is consistent with the different crystallographic orientations of the films. The high structural quality, even at room temperature, is reflected in a high value of the saturation magnetization and low coercivity, matching the requirements for technological applications.
Highly Textured FeCo Thin Films Deposited by Low Temperature Pulsed Laser Deposition / Varvaro, Gaspare; Peddis, Davide; Barucca, Gianni; Mengucci, Paolo; Rodionova, Valeria; Chichay, Ksenia; Testa, Alberto Maria; Agostinelli, Elisabetta; Laureti, Sara. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8244. - ELETTRONICO. - 7:40(2015), pp. 22341-22347. [10.1021/acsami.5b06030]
Highly Textured FeCo Thin Films Deposited by Low Temperature Pulsed Laser Deposition
BARUCCA, Gianni;MENGUCCI, Paolo;
2015-01-01
Abstract
The effect of the deposition temperature (Tdep) on the crystallographic orientation of pulsed laser-deposited FeCo/MgO(100) thin film was determined by means of X-ray reflectivity and high resolution trasmission electron microscopy analysis and was correlated with the magnetic anisotropy properties measured by angle dependent hysteresis loops. Highly textured films with a bcc structure and very smooth surface were obtained even at room temperature, the film being [100] and [110] oriented, at Tdep = 25 °C and 150 °C, respectively. The cubic symmetry is reflected in the angular dependence of remanent magnetization, showing a 4-fold character, whose in-plane distribution is consistent with the different crystallographic orientations of the films. The high structural quality, even at room temperature, is reflected in a high value of the saturation magnetization and low coercivity, matching the requirements for technological applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.