The performance of a mechanical stirrer is numerically investigated, when its rotation axis is moved parallel to the three Cartesian axes in the reverberation chamber. We present results for the same stirrer, and for a stirrer with the same paddles but a different length to match the chamber sides. The number of uncorrelated stirrer positions is calculated using our finite-difference time-domain code, optimized for reverberation chamber simulations in high-performance computers. No significant differences were found in the simulation results when the stirrer axis and length are changed. However, a significant stirrer performance enhancement occurs when the blade width is increased.
Stirrer Efficiency as a Function of its Axis Orientation / Bastianelli, Luca; MARIANI PRIMIANI, Valter; Moglie, Franco. - In: IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY. - ISSN 0018-9375. - STAMPA. - 57:6(2015), pp. 1732-1735. [10.1109/TEMC.2015.2477465]
Stirrer Efficiency as a Function of its Axis Orientation
BASTIANELLI, LUCA;MARIANI PRIMIANI, Valter;MOGLIE, FRANCO
2015-01-01
Abstract
The performance of a mechanical stirrer is numerically investigated, when its rotation axis is moved parallel to the three Cartesian axes in the reverberation chamber. We present results for the same stirrer, and for a stirrer with the same paddles but a different length to match the chamber sides. The number of uncorrelated stirrer positions is calculated using our finite-difference time-domain code, optimized for reverberation chamber simulations in high-performance computers. No significant differences were found in the simulation results when the stirrer axis and length are changed. However, a significant stirrer performance enhancement occurs when the blade width is increased.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.