Lithologic discontinuity identification can be arduous and erroneous in instances where distinct morphological differences between parent materials are absent. Often, investigators must wait for laboratory data to help differentiate parent materials via physicochemical properties. This study used visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) and portable X-ray fluorescence (PXRF) spectrometry for establishing parent material differentia more quickly. Ten pedons containing 135 samples were scanned in situ in the United States, Italy, and Hungary, morphologically described by trained pedologists, then sampled for standard laboratory characterization. Compared with laboratory data and/or morphologically described discontinuities, PXRF data were associated with large, abrupt changes in standardized PXRF differences of elements (DEs), noted in data plots as DE maxima and minima—areas of likely discontinuity. Standardized VisNIR DRS calculated differences (CDs) in reflectance spectra (350–2500 nm) were also associated with discontinuities based on CD reflectance maxima and minima. Notably within both types of data plots, lithologic discontinuities were not well captured by the proximal sensors when CD or DE values fell in the data plot midsection (i.e., not at maxima or minima within the data plots). Across the pedons evaluated, PXRF was more useful for detecting discontinuities than VisNIR DRS. Summarily, PXRF showed good alignment with morphologically established discontinuities in eight out of 10 pedons, while VisNIR DRS showed good alignment in only five pedons. Both PXRF and VisNIR DRS provided useful information for lithologic discontinuity recognition, especially in soils with nondescript morphology.

Lithologic Discontinuity Assessment in Soils via Portable X-ray Fluorescence Spectrometry and Visible Near-Infrared Diffuse Reflectance Spectroscopy / Weindorf, David C.; Chakraborty, Somsubhra; Abdalsatar, Abdalsamad; Aldabaa, Ali; Paulette, Laura; Corti, Giuseppe; Cocco, Stefania; Michéli, Erika; Wang, Dandan; Li, Bin; Man, Titus; Sharma, Aakriti; Person, Taylor. - In: SOIL SCIENCE SOCIETY OF AMERICA JOURNAL. - ISSN 0361-5995. - STAMPA. - 79:0(2015), pp. 1704-1716. [10.2136/sssaj2015.04.0160]

Lithologic Discontinuity Assessment in Soils via Portable X-ray Fluorescence Spectrometry and Visible Near-Infrared Diffuse Reflectance Spectroscopy

CORTI, Giuseppe;COCCO, Stefania;
2015-01-01

Abstract

Lithologic discontinuity identification can be arduous and erroneous in instances where distinct morphological differences between parent materials are absent. Often, investigators must wait for laboratory data to help differentiate parent materials via physicochemical properties. This study used visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) and portable X-ray fluorescence (PXRF) spectrometry for establishing parent material differentia more quickly. Ten pedons containing 135 samples were scanned in situ in the United States, Italy, and Hungary, morphologically described by trained pedologists, then sampled for standard laboratory characterization. Compared with laboratory data and/or morphologically described discontinuities, PXRF data were associated with large, abrupt changes in standardized PXRF differences of elements (DEs), noted in data plots as DE maxima and minima—areas of likely discontinuity. Standardized VisNIR DRS calculated differences (CDs) in reflectance spectra (350–2500 nm) were also associated with discontinuities based on CD reflectance maxima and minima. Notably within both types of data plots, lithologic discontinuities were not well captured by the proximal sensors when CD or DE values fell in the data plot midsection (i.e., not at maxima or minima within the data plots). Across the pedons evaluated, PXRF was more useful for detecting discontinuities than VisNIR DRS. Summarily, PXRF showed good alignment with morphologically established discontinuities in eight out of 10 pedons, while VisNIR DRS showed good alignment in only five pedons. Both PXRF and VisNIR DRS provided useful information for lithologic discontinuity recognition, especially in soils with nondescript morphology.
2015
File in questo prodotto:
File Dimensione Formato  
LD PXRF_post print.pdf

accesso aperto

Descrizione: This is the peer reviewed version of the following article: Weindorf, D.C., Chakraborty, S., Abdalsatar, A., Aldabaa, A., Paulette, L., Corti, G., Cocco, S., Michéli, E., Wang, D., Li, B., Man, T., Sharma, A. and Person, T. (2015), Lithologic Discontinuity Assessment in Soils via Portable X-ray Fluorescence Spectrometry and Visible Near-Infrared Diffuse Reflectance Spectroscopy. Soil Science Society of America Journal, 79: 1704-1716. , which has been published in final form at https://doi.org/10.2136/sssaj2015.04.0160. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Licenza specifica dell’editore
Dimensione 258.25 kB
Formato Adobe PDF
258.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/228455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 34
social impact