This study describes the preparation, characterization, and in vivo evaluation in rats of nanostructured lipid carriers (NLCs) encapsulating rimonabant (RMN) as prototypical cannabinoid antagonist. A study was conducted in order to optimize NLC production by melt and ultrasonication method. NLCs were prepared by alternatively adding the lipid phase into the aqueous one (direct protocol) or the aqueous phase into the lipid one (reverse protocol). RMN-NLCs have been characterized by cryogenic transmission electron microscopy (cryo-TEM), X-ray, photon correlation spectroscopy (PCS) and sedimentation field flow fractionation (SdFFF). Reverse NLCs were treated with polysorbate 80. RMN release kinetics have been determined in vitro by dialysis method. In vivo RMN biodistribution in rats was evaluated after intranasal (i.n.) administration of reverse RMN-NLC. The reverse protocol enabled to prevent the lost of lipid phase and to achieve higher RMN encapsulation efficacy (EE) with respect to the direct protocol (98% w/w versus 67% w/w). The use of different protocols did not affect NLC morphology and dimensional distribution. An in vitro dissolutive release rate of RMN was calculated. The in vivo data indicate that i.n. administration of RMN by reverse NLC treated with polysorbate 80 increased RMN concentration in the brain with respect to the drug in solution. The nanoencapsulation protocol presented here appears as an optimal strategy to improve the low solubility of cannabinoid compounds in an aqueous system suitable for in vivo administration.

Cannabinoid antagonist in nanostructured lipid carriers (NLCs): Design, characterization and in vivo study / Esposito, Elisabetta; Ravani, Laura; Drechsler, Markus; Mariani, Paolo; Contado, Catia; Ruokolainen, Janne; Ratano, Patrizia; Campolongo, Patrizia; Trezza, Viviana; Nastruzzi, Claudio; Cortesi, Rita. - In: MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS. - ISSN 0928-4931. - STAMPA. - 48:(2015), pp. 328-336. [10.1016/j.msec.2014.12.012]

Cannabinoid antagonist in nanostructured lipid carriers (NLCs): Design, characterization and in vivo study

MARIANI, Paolo;
2015-01-01

Abstract

This study describes the preparation, characterization, and in vivo evaluation in rats of nanostructured lipid carriers (NLCs) encapsulating rimonabant (RMN) as prototypical cannabinoid antagonist. A study was conducted in order to optimize NLC production by melt and ultrasonication method. NLCs were prepared by alternatively adding the lipid phase into the aqueous one (direct protocol) or the aqueous phase into the lipid one (reverse protocol). RMN-NLCs have been characterized by cryogenic transmission electron microscopy (cryo-TEM), X-ray, photon correlation spectroscopy (PCS) and sedimentation field flow fractionation (SdFFF). Reverse NLCs were treated with polysorbate 80. RMN release kinetics have been determined in vitro by dialysis method. In vivo RMN biodistribution in rats was evaluated after intranasal (i.n.) administration of reverse RMN-NLC. The reverse protocol enabled to prevent the lost of lipid phase and to achieve higher RMN encapsulation efficacy (EE) with respect to the direct protocol (98% w/w versus 67% w/w). The use of different protocols did not affect NLC morphology and dimensional distribution. An in vitro dissolutive release rate of RMN was calculated. The in vivo data indicate that i.n. administration of RMN by reverse NLC treated with polysorbate 80 increased RMN concentration in the brain with respect to the drug in solution. The nanoencapsulation protocol presented here appears as an optimal strategy to improve the low solubility of cannabinoid compounds in an aqueous system suitable for in vivo administration.
File in questo prodotto:
File Dimensione Formato  
2015_MSEC_nanoRMN.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11392_2275617_preprint_Cannabinoid.pdf

accesso aperto

Descrizione: DOI: 10.1016/j.msec.2014.12.012
Tipologia: Documento in pre-print (manoscritto inviato all’editore precedente alla peer review)
Licenza d'uso: Tutti i diritti riservati
Dimensione 933.75 kB
Formato Adobe PDF
933.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/227699
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 46
social impact