Tumours exhibit higher basal levels of reactive oxygen species (ROS) and altered redox environment compared to normal cells. Excessive level of ROS can be toxic to these cells, thus they become more vulnerable to damage by further ROS insults induced by pharmacological agents. However, the upregulation of antioxidant capacity in adaptation to intrinsic oxidative stress in cancer cells can confer drug resistance. Therefore, abrogation of such drug-resistant mechanisms by redox modulation could have significant therapeutic implications. Many redox-modulating agents have been developed. The redox-active system epitomised by ascorbate-driven quinone redox cycling, and the group of redox-silent vitamin E analogues represented by α-tocopheryl succinate have been shown to induce selective cancer cell death in different types of cancer. These compounds synergistically act by destabilising organelles like mitochondria, unleashing their apoptogenic potential, which results in efficient death of malignant cells and suppression of tumour growth. Consistent with this notion, clinical trials that aim to examine the therapeutic performance of novel redox-modulating drugs in cancer patients are currently under way.

Redox-active and redox-silent compounds: synergistic therapeutics in cancer / Tomasetti, Marco; Santarelli, Lory; Alleva, R; Dong, Lan Feng; Neuzil, J.. - In: CURRENT MEDICINAL CHEMISTRY. - ISSN 1875-533X. - 22:5(2014), p. 552-68.

Redox-active and redox-silent compounds: synergistic therapeutics in cancer

TOMASETTI, Marco;SANTARELLI, Lory;
2014-01-01

Abstract

Tumours exhibit higher basal levels of reactive oxygen species (ROS) and altered redox environment compared to normal cells. Excessive level of ROS can be toxic to these cells, thus they become more vulnerable to damage by further ROS insults induced by pharmacological agents. However, the upregulation of antioxidant capacity in adaptation to intrinsic oxidative stress in cancer cells can confer drug resistance. Therefore, abrogation of such drug-resistant mechanisms by redox modulation could have significant therapeutic implications. Many redox-modulating agents have been developed. The redox-active system epitomised by ascorbate-driven quinone redox cycling, and the group of redox-silent vitamin E analogues represented by α-tocopheryl succinate have been shown to induce selective cancer cell death in different types of cancer. These compounds synergistically act by destabilising organelles like mitochondria, unleashing their apoptogenic potential, which results in efficient death of malignant cells and suppression of tumour growth. Consistent with this notion, clinical trials that aim to examine the therapeutic performance of novel redox-modulating drugs in cancer patients are currently under way.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/225049
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact