This study was carried out to investigate the anti-tumor effect and mechanism of hiporfin-mediated photodynamic therapy (hiporfin-PDT) in osteosarcoma. We found that hiporfin accumulated mainly in the cytoplasm of osteosarcoma cells in a time and concentration-dependent manner. Hiporfin-PDT inhibited the proliferation, induced apoptosis and produced cell cycle arrest at G2M in osteosarcoma cell lines. Hiporfin-PDT increased the expression of cleaved-caspase-3, cleaved PARP-1, Bax and RIP1 while it decreased the expression of Bcl-2; in addition, low concentration of hiporfin increased LC3 conversion. Furthermore, cell death caused by hiporfin-PDT could be rescued by Nec-1 but not by Z-VAD-FMK. Production of reactive oxygen species was increased after hiporfin-PDT. In vivo studies showed a significant decrease in tumor volume and weight after hiporfin-PDT in all three tumor mouse models investigated (subcutaneous and orthotopic). Histological analysis showed widespread cell apoptosis and necrosis after treatment. Immunohistochemistry also showed upregulation of cleaved-caspase-3 and downregulation of Bcl-2 after hiporfin-PDT. These results indicate that hiporfin-PDT exhibits a killing effect in osteosarcoma both in vitro and in vivo, which is associated with apoptosis and necroptosis, while autophagy plays a protective role. All these findings shed light on a potential future clinical use for hiporfin in the treatment of osteosarcoma.
Hiporfin-Mediated Photodynamic Therapy in Preclinical Treatment of Osteosarcoma / Sun, M; Zhou, C; Zeng, H; Puebla Osorio, N; Damiani, Elisabetta; Chen, J; Wang, H; Li, G; Yin, F; Shan, L; Zuo, D; Liao, Y; Wang, Z; Zheng, L; Hua, Y; Cai, Z.. - In: PHOTOCHEMISTRY AND PHOTOBIOLOGY. - ISSN 1751-1097. - 91:(2015), pp. 533-544. [10.1111/php.12424]
Hiporfin-Mediated Photodynamic Therapy in Preclinical Treatment of Osteosarcoma
DAMIANI, Elisabetta;
2015-01-01
Abstract
This study was carried out to investigate the anti-tumor effect and mechanism of hiporfin-mediated photodynamic therapy (hiporfin-PDT) in osteosarcoma. We found that hiporfin accumulated mainly in the cytoplasm of osteosarcoma cells in a time and concentration-dependent manner. Hiporfin-PDT inhibited the proliferation, induced apoptosis and produced cell cycle arrest at G2M in osteosarcoma cell lines. Hiporfin-PDT increased the expression of cleaved-caspase-3, cleaved PARP-1, Bax and RIP1 while it decreased the expression of Bcl-2; in addition, low concentration of hiporfin increased LC3 conversion. Furthermore, cell death caused by hiporfin-PDT could be rescued by Nec-1 but not by Z-VAD-FMK. Production of reactive oxygen species was increased after hiporfin-PDT. In vivo studies showed a significant decrease in tumor volume and weight after hiporfin-PDT in all three tumor mouse models investigated (subcutaneous and orthotopic). Histological analysis showed widespread cell apoptosis and necrosis after treatment. Immunohistochemistry also showed upregulation of cleaved-caspase-3 and downregulation of Bcl-2 after hiporfin-PDT. These results indicate that hiporfin-PDT exhibits a killing effect in osteosarcoma both in vitro and in vivo, which is associated with apoptosis and necroptosis, while autophagy plays a protective role. All these findings shed light on a potential future clinical use for hiporfin in the treatment of osteosarcoma.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.