We propose an automatic, privacy-preserving, fall detection method for indoor environments, based on the usage of the Microsoft Kinect® depth sensor, in an “on-ceiling” configuration, and on the analysis of depth frames. All the elements captured in the depth scene are recognized by means of an Ad-Hoc segmentation algorithm, which analyzes the raw depth data directly provided by the sensor. The system extracts the elements, and implements a solution to classify all the blobs in the scene. Anthropometric relationships and features are exploited to recognize one or more human subjects among the blobs. Once a person is detected, he is followed by a tracking algorithm between different frames. The use of a reference depth frame, containing the set-up of the scene, allows one to extract a human subject, even when he/she is interacting with other objects, such as chairs or desks. In addition, the problem of blob fusion is taken into account and efficiently solved through an inter-frame processing algorithm. A fall is detected if the depth blob associated to a person is near to the floor. Experimental tests show the effectiveness of the proposed solution, even in complex scenarios.

A Depth-Based Fall Detection System Using a Kinect Sensor / Gasparrini, S.; Cippitelli, E.; Spinsante, Susanna; Gambi, Ennio. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 14:2(2014), pp. 2756-2775. [10.3390/s140202756]

A Depth-Based Fall Detection System Using a Kinect Sensor

SPINSANTE, Susanna;GAMBI, Ennio
2014-01-01

Abstract

We propose an automatic, privacy-preserving, fall detection method for indoor environments, based on the usage of the Microsoft Kinect® depth sensor, in an “on-ceiling” configuration, and on the analysis of depth frames. All the elements captured in the depth scene are recognized by means of an Ad-Hoc segmentation algorithm, which analyzes the raw depth data directly provided by the sensor. The system extracts the elements, and implements a solution to classify all the blobs in the scene. Anthropometric relationships and features are exploited to recognize one or more human subjects among the blobs. Once a person is detected, he is followed by a tracking algorithm between different frames. The use of a reference depth frame, containing the set-up of the scene, allows one to extract a human subject, even when he/she is interacting with other objects, such as chairs or desks. In addition, the problem of blob fusion is taken into account and efficiently solved through an inter-frame processing algorithm. A fall is detected if the depth blob associated to a person is near to the floor. Experimental tests show the effectiveness of the proposed solution, even in complex scenarios.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/144685
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 177
  • ???jsp.display-item.citation.isi??? 135
social impact