We consider a singularly perturbed system where the fast dynamics of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. We generalize to the multi-dimensional case the results obtained in a previous paper where the slow-time system is $1$-dimensional. We prove the existence of a unique trajectory $(\breve{x}(t,\ep,\la),\breve{y}(t,\ep,\la))$ homoclinic to a centre manifold of the slow manifold. Then we construct curves in the $2$-dimensional parameters space, dividing it in different areas where $(\breve{x}(t,\ep,\la),\breve{y}(t,\ep,\la))$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.

Bifurcation diagrams for singularly perturbed system: the multi-dimensional case

FRANCA, Matteo
2013

Abstract

We consider a singularly perturbed system where the fast dynamics of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. We generalize to the multi-dimensional case the results obtained in a previous paper where the slow-time system is $1$-dimensional. We prove the existence of a unique trajectory $(\breve{x}(t,\ep,\la),\breve{y}(t,\ep,\la))$ homoclinic to a centre manifold of the slow manifold. Then we construct curves in the $2$-dimensional parameters space, dividing it in different areas where $(\breve{x}(t,\ep,\la),\breve{y}(t,\ep,\la))$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11566/135462
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact