We consider a singularly perturbed system where the fast dynamics of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. We generalize to the multi-dimensional case the results obtained in a previous paper where the slow-time system is \$1\$-dimensional. We prove the existence of a unique trajectory \$(\breve{x}(t,\ep,\la),\breve{y}(t,\ep,\la))\$ homoclinic to a centre manifold of the slow manifold. Then we construct curves in the \$2\$-dimensional parameters space, dividing it in different areas where \$(\breve{x}(t,\ep,\la),\breve{y}(t,\ep,\la))\$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.

### Bifurcation diagrams for singularly perturbed system: the multi-dimensional case

#### Abstract

We consider a singularly perturbed system where the fast dynamics of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. We generalize to the multi-dimensional case the results obtained in a previous paper where the slow-time system is \$1\$-dimensional. We prove the existence of a unique trajectory \$(\breve{x}(t,\ep,\la),\breve{y}(t,\ep,\la))\$ homoclinic to a centre manifold of the slow manifold. Then we construct curves in the \$2\$-dimensional parameters space, dividing it in different areas where \$(\breve{x}(t,\ep,\la),\breve{y}(t,\ep,\la))\$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.
##### Scheda breve Scheda completa Scheda completa (DC)
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11566/135462`
##### Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

##### Citazioni
• ND
• 0
• 1