In this paper we derive a strain gradient plate model from the three-dimensional equations of strain gradient linearized elasticity. The deduction is based on the asymptotic analysis with respect of a small real parameter being the thickness of the elastic body we consider. The body is constituted by a second gradient isotropic linearly elastic material. The obtained model is recognized as a strain gradient Reissner-Mindlin plate model. We also provide a mathematical justification of the obtained plate model by means of a variational weak convergence result.

An asymptotic strain gradient Reissner-Mindlin plate model / Serpilli, Michele; Krasucki, F.; Geymonat, G.. - In: MECCANICA. - ISSN 0025-6455. - ELETTRONICO. - 48:8(2013), pp. 2007-2018. [10.1007/s11012-013-9719-6]

An asymptotic strain gradient Reissner-Mindlin plate model

SERPILLI, Michele;
2013-01-01

Abstract

In this paper we derive a strain gradient plate model from the three-dimensional equations of strain gradient linearized elasticity. The deduction is based on the asymptotic analysis with respect of a small real parameter being the thickness of the elastic body we consider. The body is constituted by a second gradient isotropic linearly elastic material. The obtained model is recognized as a strain gradient Reissner-Mindlin plate model. We also provide a mathematical justification of the obtained plate model by means of a variational weak convergence result.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/112870
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact