This paper considers the problem of asymptotic output regulation by output dynamic feedback for continuous-time linear switching systems, with the requirement of asymptotic stability of the regulation loop. Using tools and methods of the geometric approach, necessary and sufficient conditions for the existence of solutions, under suitable assumptions, are found. A synthesis procedure is outlined in case a stronger sufficient condition holds. The case of different stability requirements, in particular that of quadratic stability, is discussed.

A Geometric Approach to Output Regulation for Linear Switching Systems / Zattoni, E.; Perdon, ANNA MARIA; Conte, Giuseppe. - ELETTRONICO. - Volume 5, Part 1:(2013), pp. 172-177. (Intervento presentato al convegno Joint 2013 SSSC, TDS, FDA tenutosi a Grenoble, France nel February 4-6, 2013.) [10.3182/20130204-3-FR-2033.00007].

A Geometric Approach to Output Regulation for Linear Switching Systems

PERDON, ANNA MARIA;CONTE, GIUSEPPE
2013-01-01

Abstract

This paper considers the problem of asymptotic output regulation by output dynamic feedback for continuous-time linear switching systems, with the requirement of asymptotic stability of the regulation loop. Using tools and methods of the geometric approach, necessary and sufficient conditions for the existence of solutions, under suitable assumptions, are found. A synthesis procedure is outlined in case a stronger sufficient condition holds. The case of different stability requirements, in particular that of quadratic stability, is discussed.
2013
IFAC PROCEEDINGS VOLUMES
9783902823250
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/87329
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact