This work proposes a preliminary study of an automatic recognition system for the Italian Sign Language (Lingua Italiana dei Segni - LIS). Several other attempts have been made in the literature, but they are typically oriented to international languages. The system is composed of a feature extraction stage, and a sign recognition stage. Each sign is represeted by a single Hidden Markov Model, with parameters estimated through the resubstitution method. Then, starting from a set of features related to the position and the shape of head and hands, the Sequential Forward Selection technique has been applied to obtain feature vectors with the minimum dimension and the best recognition performance. Experiments have been performed using the cross-validation method on the Italian Sign Language Database A3LIS-147, maintaining the orthogonality between training and test sets. The obtained recognition accuracy averaged across all signers is 47.24%, which represents an encouraging result and demonstrates the effectiveness of the idea.

A New System for Automatic Recognition of Italian Sign Language / Fagiani, Marco; Principi, Emanuele; Squartini, Stefano; Piazza, Francesco. - Smart Innovation, Systems and Technologies, Vol. 19:(2013), pp. 69-79. [10.1007/978-3-642-35467-0_8]

A New System for Automatic Recognition of Italian Sign Language

FAGIANI, MARCO;PRINCIPI, EMANUELE;SQUARTINI, Stefano;PIAZZA, Francesco
2013-01-01

Abstract

This work proposes a preliminary study of an automatic recognition system for the Italian Sign Language (Lingua Italiana dei Segni - LIS). Several other attempts have been made in the literature, but they are typically oriented to international languages. The system is composed of a feature extraction stage, and a sign recognition stage. Each sign is represeted by a single Hidden Markov Model, with parameters estimated through the resubstitution method. Then, starting from a set of features related to the position and the shape of head and hands, the Sequential Forward Selection technique has been applied to obtain feature vectors with the minimum dimension and the best recognition performance. Experiments have been performed using the cross-validation method on the Italian Sign Language Database A3LIS-147, maintaining the orthogonality between training and test sets. The obtained recognition accuracy averaged across all signers is 47.24%, which represents an encouraging result and demonstrates the effectiveness of the idea.
2013
Neural Nets and Surroundings
9783642354663
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/83970
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact