There is a great interest in exploring the proprieties of the sense of the touch, its detailed knowledge in fact is a key issue in the area of robotics, haptics and human-machine interaction. In this paper, the authors focus their attention on a novel measurement method for the assessment of the tactile stiffness based on a original test rig; tactile stiffness is defined as the ratio between force, exerted by the finger, and the displacement of the finger tip operated during the test. To reach this scope, the paper describes a specific experimental test-rig used for the evaluation of subject tactile sensitivity, where finger force applied during tests as well as displacement and velocity of displacement, operated by the subject under investigation, are measured. Results show that tactile stiffness is linear respect to stimuli spatial difference (which is proportional to the difficulty to detect the variation of them). In particular, it has been possible to relate the force and displacement measured during the tests. The relationship between the response of the subject to the grating, velocity and force is determined. These results permit to carry out the further experimental tests on the same subject avoiding the use of a load cell and therefore simplifying the measurement test rig and data post-processing. Indeed, the first aspect (use of a load cell) can be relevant, because the grating positions are different, requiring a specific re-calibration and setting before each trial; while the second aspect allows simplify the test rig complexity and the processing algorithm.
Laser application on haptics: Tactile stiffness measurement / Scalise, Lorenzo; M., Memeo; F., Cannella; M., Valente; D. G., Caldwell; Tomasini, Enrico Primo. - 2012:(2012), pp. 287-293. (Intervento presentato al convegno 10TH INTERNATIONAL CONFERENCE ON VIBRATION MEASUREMENTS BY LASER AND NONCONTACT TECHNIQUES - AIVELA 2012 tenutosi a Ancona, ITALY nel 27-29 June 2012) [10.1063/1.4730569].
Laser application on haptics: Tactile stiffness measurement
SCALISE, Lorenzo;TOMASINI, Enrico Primo
2012-01-01
Abstract
There is a great interest in exploring the proprieties of the sense of the touch, its detailed knowledge in fact is a key issue in the area of robotics, haptics and human-machine interaction. In this paper, the authors focus their attention on a novel measurement method for the assessment of the tactile stiffness based on a original test rig; tactile stiffness is defined as the ratio between force, exerted by the finger, and the displacement of the finger tip operated during the test. To reach this scope, the paper describes a specific experimental test-rig used for the evaluation of subject tactile sensitivity, where finger force applied during tests as well as displacement and velocity of displacement, operated by the subject under investigation, are measured. Results show that tactile stiffness is linear respect to stimuli spatial difference (which is proportional to the difficulty to detect the variation of them). In particular, it has been possible to relate the force and displacement measured during the tests. The relationship between the response of the subject to the grating, velocity and force is determined. These results permit to carry out the further experimental tests on the same subject avoiding the use of a load cell and therefore simplifying the measurement test rig and data post-processing. Indeed, the first aspect (use of a load cell) can be relevant, because the grating positions are different, requiring a specific re-calibration and setting before each trial; while the second aspect allows simplify the test rig complexity and the processing algorithm.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.