Neural learning algorithms based on optimization on manifolds differ by the way the single learning steps are effected on the neural system's parameter space. In this paper, we present a class counting four neural learning algorithms based on the differential geometric concept of mappings from the tangent space of a manifold to the manifold itself. A learning stepsize adaptation theory is proposed as well under the hypothesis of additiveness of the learning criterion. The numerical performances of the discussed algorithms are illustrated on a learning task and are compared to a reference algorithm known from literature. © Springer-Verlag Berlin Heidelberg 2007.

Neural learning algorithms based on mappings: The case of the unitary group of matrices / Fiori, Simone. - 4668 LNCS:(2007), pp. 858-863.

Neural learning algorithms based on mappings: The case of the unitary group of matrices

FIORI, Simone
2007-01-01

Abstract

Neural learning algorithms based on optimization on manifolds differ by the way the single learning steps are effected on the neural system's parameter space. In this paper, we present a class counting four neural learning algorithms based on the differential geometric concept of mappings from the tangent space of a manifold to the manifold itself. A learning stepsize adaptation theory is proposed as well under the hypothesis of additiveness of the learning criterion. The numerical performances of the discussed algorithms are illustrated on a learning task and are compared to a reference algorithm known from literature. © Springer-Verlag Berlin Heidelberg 2007.
2007
International Conference on Artificial Neural Networks (ICANN'07)
9783540746898
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/73868
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact