We propose a Multiple Neural Networks system for dynamic environments, where one or more neural nets could no longer be able to properly operate, due to partial changes in some of the characteristics of the individuals. We assume that each expert network has a reliability factor that can be dynamically re-evaluated on the ground of the global recognition operated by the overall group. Since the net’s degree of reliability is defined as the probability that the net is giving the desired output, in case of conflicts between the outputs of the various nets the re-evaluation of their degrees of reliability can be simply performed on the basis of the Bayes Rule. The new vector of reliability will be used for making the final choice, by applying two algorithms, the Inclusion based and the Weighted one over all the maximally consistent subsets of the global outcome.

An Hybrid System for Continuous Learning / Dragoni, Aldo Franco; G., Vallesi; P., Baldassarri; AND M., Mazzieri. - STAMPA. - 6077:(2010), pp. 296-303. (Intervento presentato al convegno HAIS 2010 tenutosi a SAN SEBASTIAN, SPAIN nel JUNE 23-25, 2010) [10.1007/978-3-642-13803-4_37].

An Hybrid System for Continuous Learning

DRAGONI, Aldo Franco;
2010-01-01

Abstract

We propose a Multiple Neural Networks system for dynamic environments, where one or more neural nets could no longer be able to properly operate, due to partial changes in some of the characteristics of the individuals. We assume that each expert network has a reliability factor that can be dynamically re-evaluated on the ground of the global recognition operated by the overall group. Since the net’s degree of reliability is defined as the probability that the net is giving the desired output, in case of conflicts between the outputs of the various nets the re-evaluation of their degrees of reliability can be simply performed on the basis of the Bayes Rule. The new vector of reliability will be used for making the final choice, by applying two algorithms, the Inclusion based and the Weighted one over all the maximally consistent subsets of the global outcome.
2010
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
9783642138027
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/54053
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact