The present investigation aims at studying and modelling the flow behaviour of the AZ31 magnesium alloy by means of torsion tests performed in extended ranges of temperature and strain rates. Two types of rheological models were considered. The former is based on the power law equation, whilst the latter is based on the Sellars and Tegart approach. The effectiveness of the two constitutive models in describing the flow behaviour of the AZ31 magnesium alloy under investigation was evaluated. It was observed that both the equations are able to predict the flow behaviour of the material at different temperatures and strain rates. In particular, the former is very effective in predicting the hardening stage of the flow curve, whilst the latter allows to fit the softening stage. The models were used for the finite element analysis of a complex extrusion process and the results, in terms of the load-stroke curves, compared to each other.

Constitutive models for AZ31 Magnesium alloys / Bruni, Carlo; Donati, L.; EL MEHTEDI, Mohamad; Simoncini, M.. - STAMPA. - 367:(2008), pp. 87-94. [10.4028/www.scientific.net/KEM.367.87]

Constitutive models for AZ31 Magnesium alloys

BRUNI, CARLO;EL MEHTEDI, Mohamad;
2008-01-01

Abstract

The present investigation aims at studying and modelling the flow behaviour of the AZ31 magnesium alloy by means of torsion tests performed in extended ranges of temperature and strain rates. Two types of rheological models were considered. The former is based on the power law equation, whilst the latter is based on the Sellars and Tegart approach. The effectiveness of the two constitutive models in describing the flow behaviour of the AZ31 magnesium alloy under investigation was evaluated. It was observed that both the equations are able to predict the flow behaviour of the material at different temperatures and strain rates. In particular, the former is very effective in predicting the hardening stage of the flow curve, whilst the latter allows to fit the softening stage. The models were used for the finite element analysis of a complex extrusion process and the results, in terms of the load-stroke curves, compared to each other.
2008
Advances on Extrusion Technology and Simulation of Light Alloys
978-0-87849-467-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/36212
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact