The Bit-Flipping (BF) decoder, thanks to its very low computational complexity, is widely employed in post-quantum cryptographic schemes based on Moderate Density Parity Check codes in which, ultimately, decryption boils down to syndrome decoding. In such a setting, for security concerns, one must guarantee that the Decoding Failure Rate (DFR) is negligible. Such a condition, however, is very difficult to guarantee, because simulations are of little help and the decoder performance is difficult to model theoretically. In this paper, we introduce a new version of the BF decoder, that we call BF-Max, characterized by the fact that in each iteration only one bit (the least reliable) is flipped. When the number of iterations is equal to the number of errors to be corrected, we are able to develop a theoretical characterization of the DFR that tightly matches with numerical simulations. We also show how BF-Max can be implemented efficiently, achieving low complexity and making it inherently constant time. With our modeling, we are able to accurately predict values of DFR that are remarkably lower than those estimated by applying other approaches.

BF-Max: an Efficient Bit Flipping Decoder with Predictable Decoding Failure Rate / Baldelli, Alessio; Baldi, Marco; Chiaraluce, Franco; Santini, Paolo. - (2025), pp. 1-6. ( 2025 IEEE International Symposium on Information Theory, ISIT 2025 usa 2025) [10.1109/isit63088.2025.11195380].

BF-Max: an Efficient Bit Flipping Decoder with Predictable Decoding Failure Rate

Baldelli, Alessio;Baldi, Marco;Chiaraluce, Franco;Santini, Paolo
2025-01-01

Abstract

The Bit-Flipping (BF) decoder, thanks to its very low computational complexity, is widely employed in post-quantum cryptographic schemes based on Moderate Density Parity Check codes in which, ultimately, decryption boils down to syndrome decoding. In such a setting, for security concerns, one must guarantee that the Decoding Failure Rate (DFR) is negligible. Such a condition, however, is very difficult to guarantee, because simulations are of little help and the decoder performance is difficult to model theoretically. In this paper, we introduce a new version of the BF decoder, that we call BF-Max, characterized by the fact that in each iteration only one bit (the least reliable) is flipped. When the number of iterations is equal to the number of errors to be corrected, we are able to develop a theoretical characterization of the DFR that tightly matches with numerical simulations. We also show how BF-Max can be implemented efficiently, achieving low complexity and making it inherently constant time. With our modeling, we are able to accurately predict values of DFR that are remarkably lower than those estimated by applying other approaches.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/350412
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact