In this study, we propose a telerehabilitation system designed to remotely monitor patients and analyze data collected from commercial wearable devices throughout a 12-weeks physical exercise program. The system, developed under the RAPIDO project, utilizes a Random Forest (RF) model to predict patients' rehabilitation outcomes based on health metrics collected during the program. Preliminary results show that the RF model can effectively predict rehabilitation outcomes, offering valuable insights into patient progress and supporting the personalization of rehabilitation programs by only leveraging on commercial devices.

Telerehabilitation Outcome Prediction via Machine Learning / Ciabattoni, Lucio; Ceravolo, Maria Gabriella; Capecci, Marianna; Pepa, Lucia. - (2024). ( 3rd IEEE International Conference on Intelligent Reality, ICIR 2024 Coimbra, Portugal 05-06 December 2024) [10.1109/icir64558.2024.10976921].

Telerehabilitation Outcome Prediction via Machine Learning

Ciabattoni, Lucio
;
Ceravolo, Maria Gabriella;Capecci, Marianna;Pepa, Lucia
2024-01-01

Abstract

In this study, we propose a telerehabilitation system designed to remotely monitor patients and analyze data collected from commercial wearable devices throughout a 12-weeks physical exercise program. The system, developed under the RAPIDO project, utilizes a Random Forest (RF) model to predict patients' rehabilitation outcomes based on health metrics collected during the program. Preliminary results show that the RF model can effectively predict rehabilitation outcomes, offering valuable insights into patient progress and supporting the personalization of rehabilitation programs by only leveraging on commercial devices.
2024
9798331534424
File in questo prodotto:
File Dimensione Formato  
Ciabattoni_Telerehabilitation-Outcome-Prediction-Machine_2024.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 174.6 kB
Formato Adobe PDF
174.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/348876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact