We consider a class of parametric, implicit ordinary differential equations with a generalized -Laplacian-type term, and we study the structure of the set of forced oscillations in the presence of a periodic forcing term. Under suitable assumptions we obtain global bifurcation results whose statements require only conditions involving the well-known Brouwer degree in Euclidean spaces

Branches of Forced Oscillations for a Class of Implicit Equations Involving the Phi-Laplacian / Calamai, Alessandro; Pera, Maria Patrizia; Spadini, Marco. - 51:(2024), pp. 151-166. [10.1007/978-3-031-61337-1_7]

Branches of Forced Oscillations for a Class of Implicit Equations Involving the Phi-Laplacian

Calamai, Alessandro
;
Pera, Maria Patrizia;Spadini, Marco
2024-01-01

Abstract

We consider a class of parametric, implicit ordinary differential equations with a generalized -Laplacian-type term, and we study the structure of the set of forced oscillations in the presence of a periodic forcing term. Under suitable assumptions we obtain global bifurcation results whose statements require only conditions involving the well-known Brouwer degree in Euclidean spaces
2024
Topological methods for delay and ordinary differential equations - with applications to continuum mechanics
9783031613364
9783031613371
File in questo prodotto:
File Dimensione Formato  
Calamai_Branches-Forced-Oscillations-Class_postprint.pdf

Open Access dal 24/05/2025

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 291.2 kB
Formato Adobe PDF
291.2 kB Adobe PDF Visualizza/Apri
Calamai_Branches-Forced-Oscillations-Class_2024.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 551.4 kB
Formato Adobe PDF
551.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/345464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact