Additive manufacturing (AM) is a flexible technology allowing designers to produce highly customized and complex shapes. The design phase can be supported by Design for AM (DfAM) tools in order to reduce material waste, design time and economic resources. This paper aims to evaluate the functionality of four commercial tools for simulating the powder bed fusion (PBF) deposition process using quantitative and qualitative evaluation metrics. An AM process simulation workflow has been defined to facilitate the tools evaluation. For a complete evaluation, three different case studies were analyzed. Simulation carried out with the tools have the same critical zones relative to the three mechanical components, but with different maximum distortion values. Qualitative metrics show differences in workflow complexity and support provided by tools during the simulation setup phase. In the industrial field, these aspects can affect the choice of one tool over another.

Comparative Assessment of Simulation Tools in Design for Additive Manufacturing Process / Zanini, Alessio; Marconi, Marco; Mandolini, Marco. - (2024), pp. 13-20. [10.1007/978-3-031-52075-4_2]

Comparative Assessment of Simulation Tools in Design for Additive Manufacturing Process

Mandolini, Marco
Ultimo
Writing – Review & Editing
2024-01-01

Abstract

Additive manufacturing (AM) is a flexible technology allowing designers to produce highly customized and complex shapes. The design phase can be supported by Design for AM (DfAM) tools in order to reduce material waste, design time and economic resources. This paper aims to evaluate the functionality of four commercial tools for simulating the powder bed fusion (PBF) deposition process using quantitative and qualitative evaluation metrics. An AM process simulation workflow has been defined to facilitate the tools evaluation. For a complete evaluation, three different case studies were analyzed. Simulation carried out with the tools have the same critical zones relative to the three mechanical components, but with different maximum distortion values. Qualitative metrics show differences in workflow complexity and support provided by tools during the simulation setup phase. In the industrial field, these aspects can affect the choice of one tool over another.
2024
Design Tools and Methods in Industrial Engineering III
9783031520747
File in questo prodotto:
File Dimensione Formato  
Zanini_Comparative-assessment-simulation-tools_Pre-print.pdf

Solo gestori archivio

Tipologia: Documento in pre-print (manoscritto inviato all’editore precedente alla peer review)
Licenza d'uso: Tutti i diritti riservati
Dimensione 347.28 kB
Formato Adobe PDF
347.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Zanini_Comparative-assessment-simulation-tools_Post-print.pdf

embargo fino al 07/02/2025

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 557.96 kB
Formato Adobe PDF
557.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/329573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact