Key performance indicators (KPIs) express the company’s strategy and vision in terms of goals and enable alignment with stakeholder expectations. In business intelligence, forecasting KPIs is pivotal for strategic decision-making. For this reason, in this work we focus on forecasting KPIs. We built a transformer model architecture that outperforms conventional models like Multi-Layer Perceptrons (MLP), Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) in KPI forecasting over the Rossmann Store, supermarket 1, and 2 datasets. Our results highlight the revolutionary potential of using cutting-edge deep learning models such as the Transformer.

Forecasting of Key Performance Indicators Based on Transformer Model / Diamantini, Claudia; Khan, Tarique; Mircoli, Alex; Potena, Domenico. - 2:(2024), pp. 280-287. (Intervento presentato al convegno 26th International Conference on Enterprise Information Systems, ICEIS 2024 tenutosi a Angers (Francia) nel 28-30 aprile 2024) [10.5220/0012726500003690].

Forecasting of Key Performance Indicators Based on Transformer Model

Diamantini;Tarique Khan;Alex Mircoli;Domenico Potena
2024-01-01

Abstract

Key performance indicators (KPIs) express the company’s strategy and vision in terms of goals and enable alignment with stakeholder expectations. In business intelligence, forecasting KPIs is pivotal for strategic decision-making. For this reason, in this work we focus on forecasting KPIs. We built a transformer model architecture that outperforms conventional models like Multi-Layer Perceptrons (MLP), Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) in KPI forecasting over the Rossmann Store, supermarket 1, and 2 datasets. Our results highlight the revolutionary potential of using cutting-edge deep learning models such as the Transformer.
2024
978-989-758-692-7
File in questo prodotto:
File Dimensione Formato  
Diamantini_Forecasting-Key-Performance-Indicators_2024.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 365.88 kB
Formato Adobe PDF
365.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/328652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact