The time series prediction problem aimed at the implementation of a 'smart thermostat' is addressed. 'SARIMAX models' are compared with LSTM neural networks. We show that with a low amount of data used for training, SARIMAX models achieve significantly higher accuracy while maintaining high computational efficiency, so in a problem where it becomes necessary to implement the system on low-power embedded devices, these approaches have significant advantages over neural networks.

A Comparison of Time Series Prediction Techniques for the Realization of a Smart Thermostat / Lanciotti, A.; Lucadei, C.; Sernani, P.; Dragoni, A. F.. - (2023), pp. 301-305. (Intervento presentato al convegno 2nd Edition IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering, MetroXRAINE 2023 tenutosi a ita nel 2023) [10.1109/MetroXRAINE58569.2023.10405617].

A Comparison of Time Series Prediction Techniques for the Realization of a Smart Thermostat

Sernani P.;Dragoni A. F.
Primo
2023-01-01

Abstract

The time series prediction problem aimed at the implementation of a 'smart thermostat' is addressed. 'SARIMAX models' are compared with LSTM neural networks. We show that with a low amount of data used for training, SARIMAX models achieve significantly higher accuracy while maintaining high computational efficiency, so in a problem where it becomes necessary to implement the system on low-power embedded devices, these approaches have significant advantages over neural networks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/327280
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact