The problem of modeling water flow in the root zone with plant root absorption is of crucial importance in many environmental and agricultural issues, and is still of interest in the applied mathematics community. In this work we propose a formal justification and a theoretical background of a recently introduced numerical approach, based on the shooting method, for integrating the unsaturated flow equation with a sink term accounting for the root water uptake model. Moreover, we provide various numerical simulations for this method, comparing the results with the numerical solutions obtained by MATLAB pdepe.

On the Shooting Method Applied to Richards' Equation with a Forcing Term / Difonzo, Fv; Girardi, G. - 12949:(2021), pp. 273-286. [10.1007/978-3-030-86653-2_20]

On the Shooting Method Applied to Richards' Equation with a Forcing Term

Girardi, G
2021-01-01

Abstract

The problem of modeling water flow in the root zone with plant root absorption is of crucial importance in many environmental and agricultural issues, and is still of interest in the applied mathematics community. In this work we propose a formal justification and a theoretical background of a recently introduced numerical approach, based on the shooting method, for integrating the unsaturated flow equation with a sink term accounting for the root water uptake model. Moreover, we provide various numerical simulations for this method, comparing the results with the numerical solutions obtained by MATLAB pdepe.
2021
978-3-030-86652-5
978-3-030-86653-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/314974
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact