CuCrZr alloys achieve high mechanical properties by thermal (e.g., supersaturated temper and aging), mechanical (e.g., ECAP), or thermomechanical treatments (solution annealing, cold working, and aging). This alloy can be considered a functional material, and it can be exploited in different application fields, thanks to a combination of thermal, electrical, and strength properties. In this work, tensile tests at different strain rates have been conducted on CuCrZr specimens produced by additive manufacturing. As-built and heat-treated conditions have been considered. The quasi-static tests have been performed by an electromechanical testing machine, while the high strain rate tests have been performed by a direct-tension split Hopkinson bar. The geometry of the samples has been selected based on the requirements of the dynamic tests, and the same geometry was used in quasi-static tests for the sake of comparison. High-speed imaging has been used to capture the real strain of the specimens. The results showed a limited positive strain rate sensitivity in terms of flow stress for as-built conditions, whereas negative strain rate sensitivity was observed for the heat-treated samples, but positive sensitivity in terms of ductility was observed for as-built, whereas uncertain results occurred in the case of heat-treated material.

High-Strain-Rate Behavior of 3D-Printed CuCrZr / Sasso, M.; Mancini, E.; Utzeri, M.; Chiappini, G.; Cortis, D.; Orlandi, D.; Di Angelo, L.. - (2023), pp. 85-91. (Intervento presentato al convegno SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2022 tenutosi a usa nel 2022) [10.1007/978-3-031-17453-7_13].

High-Strain-Rate Behavior of 3D-Printed CuCrZr

Sasso M.
;
Mancini E.;Utzeri M.;Chiappini G.;
2023-01-01

Abstract

CuCrZr alloys achieve high mechanical properties by thermal (e.g., supersaturated temper and aging), mechanical (e.g., ECAP), or thermomechanical treatments (solution annealing, cold working, and aging). This alloy can be considered a functional material, and it can be exploited in different application fields, thanks to a combination of thermal, electrical, and strength properties. In this work, tensile tests at different strain rates have been conducted on CuCrZr specimens produced by additive manufacturing. As-built and heat-treated conditions have been considered. The quasi-static tests have been performed by an electromechanical testing machine, while the high strain rate tests have been performed by a direct-tension split Hopkinson bar. The geometry of the samples has been selected based on the requirements of the dynamic tests, and the same geometry was used in quasi-static tests for the sake of comparison. High-speed imaging has been used to capture the real strain of the specimens. The results showed a limited positive strain rate sensitivity in terms of flow stress for as-built conditions, whereas negative strain rate sensitivity was observed for the heat-treated samples, but positive sensitivity in terms of ductility was observed for as-built, whereas uncertain results occurred in the case of heat-treated material.
2023
978-3-031-17452-0
978-3-031-17453-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/314906
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact