As the number of drones, or Unmanned Aerial Vehicles (UAVs), rapidly rises, their detection becomes a very important task in outdoor surveillance, to prevent accidents or inappropriate use. With this goal it is also important to collect as much information as possible about the drone and this can be obtained with radar systems, exploiting the micro-Doppler signature of the drone: preliminary information can be obtained by using machine learning (ML) classification techniques but also by measuring the rotational speed of the propellers. The proposed approach described in this work can provide a better understanding of the detected UAVs which can be used to improve the safety of outdoor spaces.

Drone classification using mmWave micro-Doppler radar measurements / Ciattaglia, G.; Senigagliesi, L.; Alidori, D.; Cipriani, L.; Iadarola, G.; Spinsante, S.; Gambi, E.. - ELETTRONICO. - (2022), pp. 259-264. (Intervento presentato al convegno 9th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2022 tenutosi a ita nel 2022) [10.1109/MetroAeroSpace54187.2022.9856044].

Drone classification using mmWave micro-Doppler radar measurements

Ciattaglia G.;Senigagliesi L.;Iadarola G.;Spinsante S.;Gambi E.
2022-01-01

Abstract

As the number of drones, or Unmanned Aerial Vehicles (UAVs), rapidly rises, their detection becomes a very important task in outdoor surveillance, to prevent accidents or inappropriate use. With this goal it is also important to collect as much information as possible about the drone and this can be obtained with radar systems, exploiting the micro-Doppler signature of the drone: preliminary information can be obtained by using machine learning (ML) classification techniques but also by measuring the rotational speed of the propellers. The proposed approach described in this work can provide a better understanding of the detected UAVs which can be used to improve the safety of outdoor spaces.
2022
978-1-6654-1076-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/309791
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact