In the Cultural Heritage (CH) domain, the semantic segmentation of 3D point clouds with Deep Learning (DL) techniques allows to recognize historical architectural elements, at a suitable level of detail, and hence expedite the process of modelling historical buildings for the development of BIM models from survey data. However, it is more difficult to collect a balanced dataset of labelled architectural elements for training a network. In fact, the CH objects are unique, and it is challenging for the network to recognize this kind of data. In recent years, Generative Networks have proven to be proper for generating new data. Starting from such premises, in this paper Generative Networks have been used for augmenting a CH dataset. In particular, the performances of three state-of-art Generative Networks such as PointGrow, PointFLow and PointGMM have been compared in terms of Jensen-Shannon Divergence (JSD), the Minimum Matching Distance-Chamfer Distance (MMD-CD) and the Minimum Matching Distance-Earth Mover’s Distance (MMD-EMD). The objects generated have been used for augmenting two classes of ArCH dataset, which are columns and windows. Then a DGCNN-Mod network was trained and tested for the semantic segmentation task, comparing the performance in the case of the ArCH dataset without and with augmentation.

GENERATIVE NETWORKS FOR POINT CLOUD GENERATION IN CULTURAL HERITAGE DOMAIN / Pierdicca, Roberto; Paolanti, Marina; Quattrini, Ramona; Martini, Massimo; Malinverni, Eva Savina; Frontoni, Emanuele. - ELETTRONICO. - (2021), pp. 134-141. (Intervento presentato al convegno ARQUEOLÓGICA 2.0 - 9th International Congress & 3rd GEORES - GEOmatics and pREServation tenutosi a Valencia, Spain (Virtual Event) nel 26-28 April 2021) [10.4995/arqueologica9.2021.12101].

GENERATIVE NETWORKS FOR POINT CLOUD GENERATION IN CULTURAL HERITAGE DOMAIN

Roberto Pierdicca;Marina Paolanti
;
Ramona Quattrini;Massimo Martini;Eva Savina Malinverni;Emanuele Frontoni
2021-01-01

Abstract

In the Cultural Heritage (CH) domain, the semantic segmentation of 3D point clouds with Deep Learning (DL) techniques allows to recognize historical architectural elements, at a suitable level of detail, and hence expedite the process of modelling historical buildings for the development of BIM models from survey data. However, it is more difficult to collect a balanced dataset of labelled architectural elements for training a network. In fact, the CH objects are unique, and it is challenging for the network to recognize this kind of data. In recent years, Generative Networks have proven to be proper for generating new data. Starting from such premises, in this paper Generative Networks have been used for augmenting a CH dataset. In particular, the performances of three state-of-art Generative Networks such as PointGrow, PointFLow and PointGMM have been compared in terms of Jensen-Shannon Divergence (JSD), the Minimum Matching Distance-Chamfer Distance (MMD-CD) and the Minimum Matching Distance-Earth Mover’s Distance (MMD-EMD). The objects generated have been used for augmenting two classes of ArCH dataset, which are columns and windows. Then a DGCNN-Mod network was trained and tested for the semantic segmentation task, comparing the performance in the case of the ArCH dataset without and with augmentation.
2021
978-84-9048-872-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/300337
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact