A hybrid model that combines a stochastic volatility model [2] and the K Nearest Neighbors (KNN) model [1] is proposed to obtain precision forecasts of log returns of a risky asset traded in the financial market. The precision forecasts are the sum of the forecasts obtained with the stochastic volatility model and a correction term produced by the KNN model. Numerical experiments based on real data are performed to investigate the accuracy of the precision forecasts.

A Hybrid Model Based on Stochastic Volatility and Machine Learning to Forecast Log Returns of a Risky Asset / Fatone, Lorella; Mariani, Francesca; Zirilli, Francesco. - (2022), pp. 235-240. (Intervento presentato al convegno Mathematical and Statistical Methods for Actuarial Sciences and Finance tenutosi a University of Salerno, 20-22 April 2022) [10.1007/978-3-030-99638-3_38].

A Hybrid Model Based on Stochastic Volatility and Machine Learning to Forecast Log Returns of a Risky Asset

Mariani, Francesca
;
2022-01-01

Abstract

A hybrid model that combines a stochastic volatility model [2] and the K Nearest Neighbors (KNN) model [1] is proposed to obtain precision forecasts of log returns of a risky asset traded in the financial market. The precision forecasts are the sum of the forecasts obtained with the stochastic volatility model and a correction term produced by the KNN model. Numerical experiments based on real data are performed to investigate the accuracy of the precision forecasts.
2022
978-3-030-99637-6
978-3-030-99638-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/299181
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact