Fully exploiting ad-hoc microphone networks for distant speech recognition is still an open issue. Empirical evidence shows that being able to select the best microphone leads to significant improvements in recognition without any additional effort on front-end processing. Current channel selection techniques either rely on signal, decoder or posterior-based features. Signal-based features are inexpensive to compute but do not always correlate with recognition performance. Instead decoder and posterior-based features exhibit better correlation but require substantial computational resources. In this work, we tackle the channel selection problem by proposing MicRank, a learning to rank framework where a neural network is trained to rank the available channels using directly the recognition performance on the training set. The proposed approach is agnostic with respect to the array geometry and type of recognition back-end. We investigate different learning to rank strategies using a synthetic dataset developed on purpose and the CHiME-6 data. Results show that the proposed approach considerably improves over previous selection techniques, reaching comparable and in some instances better performance than oracle signal-based measures.

Learning to rank microphones for distant speech recognition / Cornell, S.; Brutti, A.; Matassoni, M.; Squartini, S.. - 3:(2021), pp. 1933-1937. (Intervento presentato al convegno 22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021 tenutosi a cze nel 2021) [10.21437/Interspeech.2021-1315].

Learning to rank microphones for distant speech recognition

Cornell S.;Squartini S.
2021-01-01

Abstract

Fully exploiting ad-hoc microphone networks for distant speech recognition is still an open issue. Empirical evidence shows that being able to select the best microphone leads to significant improvements in recognition without any additional effort on front-end processing. Current channel selection techniques either rely on signal, decoder or posterior-based features. Signal-based features are inexpensive to compute but do not always correlate with recognition performance. Instead decoder and posterior-based features exhibit better correlation but require substantial computational resources. In this work, we tackle the channel selection problem by proposing MicRank, a learning to rank framework where a neural network is trained to rank the available channels using directly the recognition performance on the training set. The proposed approach is agnostic with respect to the array geometry and type of recognition back-end. We investigate different learning to rank strategies using a synthetic dataset developed on purpose and the CHiME-6 data. Results show that the proposed approach considerably improves over previous selection techniques, reaching comparable and in some instances better performance than oracle signal-based measures.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/293721
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact